Suppr超能文献

使用基于权重的监督学习系统检测新冠肺炎心律失常

Detection of arrhythmia using weightage-based supervised learning system for COVID-19.

作者信息

Ketkar Yashodhan, Gawade Sushopti

机构信息

Department of Information Technology Engineering, Pillai College of Engineering, Panvel, Maharashtra 410206, India.

Department of Computer Engineering, Pillai College of Engineering, Panvel, Maharashtra 410206, India.

出版信息

Intell Syst Appl. 2022 Nov;16:200119. doi: 10.1016/j.iswa.2022.200119. Epub 2022 Aug 28.

Abstract

COVID-19 disease has became a global pandemic in the last few years. This disease was highly contagious, and it quickly spread throughout several countries. Its infection can lead to severe implications for its victims, including cardiovascular issues. This complication develops in some people with a history of cardiovascular illness, whereas it emerges in others after COVID-19 infection. Cardiovascular problems are the primary cause of mortality in COVID-19 patients and are used to predict disease prognosis. Identifying arrhythmia from abnormalities in patient ECG signals is one approach to the detection of cardiovascular disorders. This is a laborious and time-consuming procedure that can be automated. The proposed method selects the most suitable model for this task. The selection is made through the weightage generated from the user's requirements. The proposed method uses supervised learning to identify abnormalities in ECG waves. The models provided by the selection system during tests were able to meet user requirements. The models achieved up to 97% accuracy and 97% precision in predictive tasks.

摘要

在过去几年中,新冠病毒病已成为全球大流行疾病。这种疾病具有高度传染性,迅速在多个国家传播。其感染会给受害者带来严重影响,包括心血管问题。这种并发症在一些有心血管疾病史的人身上出现,而在另一些人身上则在感染新冠病毒后出现。心血管问题是新冠患者死亡的主要原因,并用于预测疾病预后。从患者心电图信号异常中识别心律失常是检测心血管疾病的一种方法。这是一个费力且耗时的过程,可实现自动化。所提出的方法为该任务选择最合适的模型。选择是通过根据用户需求生成的权重来进行的。所提出的方法使用监督学习来识别心电图波中的异常。测试期间选择系统提供的模型能够满足用户需求。这些模型在预测任务中达到了高达97%的准确率和97%的精确率。

相似文献

1
Detection of arrhythmia using weightage-based supervised learning system for COVID-19.
Intell Syst Appl. 2022 Nov;16:200119. doi: 10.1016/j.iswa.2022.200119. Epub 2022 Aug 28.
3
FADE: Forecasting for anomaly detection on ECG.
Comput Methods Programs Biomed. 2025 Jul;267:108780. doi: 10.1016/j.cmpb.2025.108780. Epub 2025 Apr 22.
4
Cardiac arrhythmia detection using deep learning approach and time frequency representation of ECG signals.
BMC Med Inform Decis Mak. 2023 Oct 19;23(1):232. doi: 10.1186/s12911-023-02326-w.
5
Deep-Risk: Deep Learning-Based Mortality Risk Predictive Models for COVID-19.
Diagnostics (Basel). 2022 Jul 30;12(8):1847. doi: 10.3390/diagnostics12081847.
6
Machine learning algorithms for predicting COVID-19 mortality in Ethiopia.
BMC Public Health. 2024 Jun 28;24(1):1728. doi: 10.1186/s12889-024-19196-0.
7
Arrhythmia detection using deep convolutional neural network with long duration ECG signals.
Comput Biol Med. 2018 Nov 1;102:411-420. doi: 10.1016/j.compbiomed.2018.09.009. Epub 2018 Sep 15.
8
Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records.
Comput Methods Programs Biomed. 2020 Dec;197:105740. doi: 10.1016/j.cmpb.2020.105740. Epub 2020 Sep 8.
9
Quickly finding a needle in a haystack: a new automated cardiac arrhythmia detection software for preclinical studies.
J Pharmacol Toxicol Methods. 2012 Sep;66(2):92-7. doi: 10.1016/j.vascn.2012.04.008. Epub 2012 Apr 23.
10
A novel transformer-based ECG dimensionality reduction stacked auto-encoders for arrhythmia beat detection.
Med Phys. 2023 Sep;50(9):5897-5912. doi: 10.1002/mp.16534. Epub 2023 Jul 20.

本文引用的文献

1
Frequency of Atrial Arrhythmia in Hospitalized Patients With COVID-19.
Am J Cardiol. 2021 May 15;147:52-57. doi: 10.1016/j.amjcard.2021.01.039. Epub 2021 Feb 20.
2
Atrial arrhythmia and its association with COVID-19 outcome: a pooled analysis.
Diagnosis (Berl). 2021 Jan 19;8(4):532-535. doi: 10.1515/dx-2020-0155. Print 2021 Nov 25.
3
Arrhythmia in COVID-19.
SN Compr Clin Med. 2020;2(9):1430-1435. doi: 10.1007/s42399-020-00454-2. Epub 2020 Aug 14.
4
Clinical characteristics of COVID-19 patients with complication of cardiac arrhythmia.
J Infect. 2020 Sep;81(3):e6-e8. doi: 10.1016/j.jinf.2020.07.012. Epub 2020 Jul 11.
5
A review of epileptic seizure detection using machine learning classifiers.
Brain Inform. 2020 May 25;7(1):5. doi: 10.1186/s40708-020-00105-1.
6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验