Analia Riska, Forster Anne, Xie Sheng-Quan, Zhang Zhiqiang
School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK.
Department of Electrical Engineering, Politeknik Negeri Batam, Batam 29461, Indonesia.
Sensors (Basel). 2025 Jun 19;25(12):3836. doi: 10.3390/s25123836.
(1) Background: Detecting long-lie incidents-where individuals remain immobile after a fall-is essential for timely intervention and preventing severe health consequences. However, most existing systems focus only on fall detection, neglect post-fall monitoring, and raise privacy concerns, especially in real-time, non-invasive applications; (2) Methods: This study proposes a lightweight, privacy-preserving, long-lie detection system utilizing thermal imaging and a soft-voting ensemble classifier. A low-resolution thermal camera captured simulated falls and activities of daily living (ADL) performed by ten healthy participants. Human pose keypoints were extracted using MediaPipe, followed by the computation of five handcrafted postural features. The top three classifiers-automatically selected based on cross-validation performance-formed the soft-voting ensemble. Long-lie conditions were identified through post-fall immobility monitoring over a defined period, using rule-based logic on posture stability and duration; (3) Results: The ensemble model achieved high classification performance with accuracy, precision, recall, and an F1 score of 0.98. Real-time deployment on a Raspberry Pi 5 demonstrated the system is capable of accurately detecting long-lie incidents based on continuous monitoring over 15 min, with minimal posture variation; (4) Conclusion: The proposed system introduces a novel approach to long-lie detection by integrating privacy-aware sensing, interpretable posture-based features, and efficient edge computing. It demonstrates strong potential for deployment in homecare settings. Future work includes validation with older adults and integration of vital sign monitoring for comprehensive assessment.
(1) 背景:检测长时间躺卧事件(即个体跌倒后保持不动的情况)对于及时干预和预防严重健康后果至关重要。然而,大多数现有系统仅专注于跌倒检测,忽视跌倒后监测,并且引发隐私担忧,尤其是在实时、非侵入性应用中;(2) 方法:本研究提出一种利用热成像和软投票集成分类器的轻量级、隐私保护的长时间躺卧检测系统。一台低分辨率热成像相机捕捉了十名健康参与者进行的模拟跌倒和日常生活活动(ADL)。使用MediaPipe提取人体姿态关键点,随后计算五个手工制作的姿势特征。基于交叉验证性能自动选择的前三个分类器构成软投票集成。通过在规定时间段内对跌倒后不动状态进行监测,利用基于规则的姿态稳定性和持续时间逻辑来识别长时间躺卧情况;(3) 结果:该集成模型在准确率、精确率、召回率和F1分数方面均达到了0.98的高分类性能。在树莓派5上进行实时部署表明,该系统能够基于15分钟的连续监测,以最小的姿态变化准确检测长时间躺卧事件;(4) 结论:所提出的系统通过整合隐私感知传感、可解释的基于姿态的特征和高效的边缘计算,引入了一种新颖的长时间躺卧检测方法。它在家庭护理环境中的部署显示出强大潜力。未来的工作包括对老年人进行验证以及整合生命体征监测以进行全面评估。
Evid Rep Technol Assess (Full Rep). 2007-8
IEEE Trans Neural Syst Rehabil Eng. 2025
Sensors (Basel). 2025-6-10
Cochrane Database Syst Rev. 2018-7-23
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2022-8-22
Cochrane Database Syst Rev. 2012-9-12
Eur Rev Aging Phys Act. 2023-8-29
BMC Geriatr. 2022-7-15
IEEE Trans Biomed Eng. 2023-1
Sensors (Basel). 2019-8-30