Schalkamp Ann-Kathrin, Peall Kathryn J, Harrison Neil A, Escott-Price Valentina, Barnaghi Payam, Sandor Cynthia
Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, United Kingdom; UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom; Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Bakar Computational Health Sciences Institute, University of California San Francisco, USA.
Neuroscience and Mental Health Innovation Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom.
EBioMedicine. 2025 Jul;117:105782. doi: 10.1016/j.ebiom.2025.105782. Epub 2025 Jun 6.
BACKGROUND: Smartwatch data has been found to identify Parkinson's disease (PD) several years before the clinical diagnosis. However, it has not been assessed against the gold standard but costly and invasive biological and pathological markers for PD. These include dopaminergic imaging (DaTscan) and cerebrospinal fluid alpha-synuclein seed amplification assay (SAA), which are being studied as markers thought to represent the onset of PD pathology. METHODS: Here, we combined clinical and biological data from the Parkinson's Progression Marker Initiative (PPMI) cohort with long-term (mean: 485 days) at-home digital monitoring data collected using the Verily Study Watch. We derived a digital risk score based on sleep, vital signs, and physical activity features to distinguish between PD (N = 143) and healthy controls (N = 34), achieving an area under precision-recall curve of 0.96 ± 0.01. We compared it with the Movement Disorder Society (MDS) research criteria for prodromal PD to detect dopaminergic deficit or α-synuclein aggregation in an at-risk cohort consisting of people with genetic markers or prodromal symptoms without a diagnosis of PD (N = 109, mean age = 64.62 ± 6.86, 40 men and 69 women). FINDINGS: The digital risk correlated with the MDS research criteria (r = 0.36, p-value = 1.46 × 10) and was increased in individuals with subthreshold Parkinsonism (p-value = 4.99 × 10) and hyposmia (p-value = 3.77 × 10). The digital risk was correlated to a stronger degree with DaTscan putamen binding ratio (r = -0.32, p-value = 6.64 × 10) than the MDS criteria (r = -0.19, p-value = 6.81 × 10) but to a weaker degree with SAA (r = 0.2, p-value = 3.9 × 10) than the MDS (r = 0.43, p-value = 1.3 × 10). The digital risk score achieved higher sensitivity in identifying synucleinopathy or neurodegeneration (0.59) than the MDS score (0.35) but performed on-par with hyposmia (0.59) with a combination of hyposmia and digital risk score achieving the highest sensitivity (0.71). The digital risk score showed lower precision (0.18) than other models. INTERPRETATION: A digital risk score from smartwatch data should be further explored as a possible first sensitive screening tool for presence of α-synuclein aggregation or dopaminergic deficit followed by subsequent more specific tests to reduce false positives. FUNDING: This project is funded by Welsh Government through Health and Care Research Wales, Medical Research Council (MRC), Higher Education Funding Council for Wales, UK Dementia Research Institute, Alzheimer's Society and Alzheimer's Research UK, Dementia Platforms UK, UKRI Engineering and Physical Sciences Research Council (EPSRC), NIHR Imperial Biomedical Research Centre (BRC), Great Ormond Street Hospital and the Royal Academy of Engineering, Edmond J. Safra Foundation, Ser Cymru II programme, and the European Regional Development Fund.
背景:研究发现,智能手表数据能够在临床诊断前数年识别出帕金森病(PD)。然而,尚未将其与PD的金标准进行对比,后者是成本高昂且具有侵入性的生物学和病理学标志物。这些标志物包括多巴胺能成像(DaTscan)和脑脊液α-突触核蛋白种子扩增分析(SAA),目前正在作为被认为代表PD病理学发病的标志物进行研究。 方法:在此,我们将帕金森病进展标志物倡议(PPMI)队列的临床和生物学数据与使用Verily研究手表收集的长期(平均:485天)家庭数字监测数据相结合。我们基于睡眠、生命体征和身体活动特征得出了一个数字风险评分,以区分PD患者(N = 143)和健康对照者(N = 34),精确召回曲线下面积达到0.96±0.01。我们将其与运动障碍协会(MDS)前驱期PD研究标准进行比较,以检测有遗传标志物或前驱症状但未诊断为PD的高危队列(N = 109,平均年龄 = 64.62±6.86,40名男性和69名女性)中的多巴胺能缺陷或α-突触核蛋白聚集。 研究结果:数字风险与MDS研究标准相关(r = 0.36,p值 = 1.46×10),在亚阈值帕金森症患者(p值 = 4.99×10)和嗅觉减退患者(p值 = 3.77×10)中升高。与MDS标准(r = -0.19,p值 = 6.81×10)相比,数字风险与DaTscan壳核结合率的相关性更强(r = -0.32,p值 = 6.64×10),但与SAA的相关性较弱(r = 0.2,p值 = 3.9×10),而MDS与SAA的相关性为(r = 0.43,p值 = 1.3×10)。数字风险评分在识别突触核蛋白病或神经退行性变方面的敏感性(0.59)高于MDS评分(0.35),但与嗅觉减退(0.59)相当,嗅觉减退和数字风险评分相结合时敏感性最高(0.71)。数字风险评分的精确度(0.18)低于其他模型。 解读:应进一步探索基于智能手表数据的数字风险评分,将其作为检测α-突触核蛋白聚集或多巴胺能缺陷存在的首个可能的敏感筛查工具,随后进行更具特异性的检测以减少假阳性。 资金来源:该项目由威尔士政府通过威尔士卫生与护理研究、医学研究理事会(MRC)、威尔士高等教育资助委员会、英国痴呆症研究所、阿尔茨海默病协会和英国阿尔茨海默病研究、英国痴呆症平台、英国研究与创新署工程与物理科学研究理事会(EPSRC)、NIHR帝国生物医学研究中心(BRC)、大奥蒙德街医院和皇家工程院、爱德蒙·J·萨夫拉基金会、Ser Cymru II项目以及欧洲区域发展基金资助。
Cochrane Database Syst Rev. 2021-4-19
Psychopharmacol Bull. 2024-7-8
Cochrane Database Syst Rev. 2020-1-9
J Parkinsons Dis. 2024
Transl Neurodegener. 2022-2-21
NPJ Parkinsons Dis. 2021-4-1