Suppr超能文献

基于对比学习的谷氨酸能离子通道1型亚基/谷氨酸能离子通道3A型亚基抑制剂药物筛选模型

Contrastive learning-based drug screening model for GluN1/GluN3A inhibitors.

作者信息

Li Kun, Zeng Yue, Xiong Yi-da, Wu Hao-Chen, Fang Sui, Qu Zhi-Yan, Zhu Yan, Du Bo, Gao Zhao-Bing, Hu Wen-Bin

机构信息

School of Computer Science, Wuhan University, Wuhan, 430037, China.

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.

出版信息

Acta Pharmacol Sin. 2025 Jun 6. doi: 10.1038/s41401-025-01580-0.

Abstract

GluN3A-containing NMDA receptors have recently emerged as promising therapeutic targets for neurological disorders. However, discovering potent modulators remains a significant challenge, primarily due to the limitations of traditional high-throughput screening methods. In this study, we introduce a novel drug-target affinity prediction method, CLG-DTA, designed to enhance drug discovery for the GluN1/GluN3A receptor. This graph contrastive learning-based method incorporates natural language supervision by transforming regression labels into textual representation, and integrating them with traditional affinity data to enhance molecular representation. Additionally, a numerical knowledge graph is employed to refine continuous text embeddings, enabling precise modeling of complex drug-target interactions across diverse data modalities. Using CLG-DTA, we screened a library of 18 million compounds and identified 12 candidates for experimental validation. Among them, five compounds exhibited significant activity, with Boeravinone E demonstrating the highest potency (  = 3.40 0.91 μM). These findings highlight the potential of CLG-DTA in accelerating the identification of promising GluN1/GluN3A modulators and lay a robust foundation for future therapeutic development.

摘要

含GluN3A的N-甲基-D-天冬氨酸受体(NMDA受体)最近已成为神经疾病颇具前景的治疗靶点。然而,发现强效调节剂仍然是一项重大挑战,主要是由于传统高通量筛选方法的局限性。在本研究中,我们引入了一种新型的药物-靶点亲和力预测方法CLG-DTA,旨在加强针对GluN1/GluN3A受体的药物发现。这种基于图对比学习的方法通过将回归标签转化为文本表示,并将其与传统亲和力数据整合以增强分子表示,从而纳入自然语言监督。此外,使用数值知识图谱来优化连续文本嵌入,能够对跨多种数据模式的复杂药物-靶点相互作用进行精确建模。使用CLG-DTA,我们筛选了一个包含1800万种化合物的文库,并确定了12种供实验验证的候选化合物。其中,5种化合物表现出显著活性,波拉文酮E的效力最高(IC50 = 3.40 ± 0.91 μM)。这些发现突出了CLG-DTA在加速鉴定有前景的GluN1/GluN3A调节剂方面的潜力,并为未来的治疗开发奠定了坚实基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验