Yin Xiaoyu, Peri Elisabetta, Pelssers Eduard, Toonder Jaap den, Mischi Massimo
Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven , Noord-Brabant, Netherlands.
Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven , Noord-Brabant, Netherlands.
Med Biol Eng Comput. 2025 Jun 7. doi: 10.1007/s11517-025-03393-z.
Sweat provides a non-invasive alternative to blood draws, enabling glucose-concentration monitoring for both healthy individuals and diabetic patients. In our previous work, we demonstrated a strategy that accurately estimates blood glucose concentrations from sweat measurements. However, this method involves time-consuming simulations using a biophysical model, limiting its application to offline use. The goal of this study is to propose an approach that increases computational efficiency, thereby facilitating real-time estimation of blood glucose concentrations using sweat-sensing technology. To this end, we propose replacing the original biophysical model with the Local Density Random Walk (LDRW) model. This is justified because both models describe the pharmacokinetics of glucose transport through a convective-diffusion process. The performance of the LDRW model and the original biophysical model are compared in terms of estimation accuracy, computational efficiency, and model complexity, using seven datasets from the literature. The estimation of blood glucose concentrations using the LDRW model closely approximates that of the original model, with a root mean square difference of just 0.04 mmol/L between the two models' estimates. Remarkably, the LDRW model significantly reduces the average computational time to 2.6 s per data point, representing only 0.7% of the time required by the original method. Furthermore, the LDRW model demonstrates a smaller corrected Akaike Information Criterion value than the original method, indicating an improved balance between goodness of fit and model complexity. The proposed novel approach paves the way for the clinical adoption of sweat-sensing technology for non-invasive, real-time monitoring of diabetes.
汗液检测为采血提供了一种非侵入性替代方法,可对健康个体和糖尿病患者进行血糖浓度监测。在我们之前的工作中,我们展示了一种通过汗液测量准确估算血糖浓度的策略。然而,该方法涉及使用生物物理模型进行耗时的模拟,限制了其仅适用于离线使用。本研究的目标是提出一种提高计算效率的方法,从而便于使用汗液传感技术实时估算血糖浓度。为此,我们建议用局部密度随机游走(LDRW)模型取代原始的生物物理模型。这样做是合理的,因为这两个模型都通过对流扩散过程描述了葡萄糖转运的药代动力学。使用文献中的七个数据集,从估计准确性、计算效率和模型复杂性方面比较了LDRW模型和原始生物物理模型的性能。使用LDRW模型估算血糖浓度与原始模型的估算结果非常接近,两个模型估算值之间的均方根差仅为0.04 mmol/L。值得注意的是,LDRW模型将平均计算时间显著减少至每个数据点2.6秒,仅占原始方法所需时间的0.7%。此外,LDRW模型的校正赤池信息准则值比原始方法小,表明在拟合优度和模型复杂性之间取得了更好的平衡。所提出的新方法为临床采用汗液传感技术进行糖尿病的非侵入性实时监测铺平了道路。