Suppr超能文献

机器学习方法评估闭眼状态下仰卧位和坐位之间放松状态的脑电图相关性

Machine Learning Approaches to Evaluate EEG Correlates of Relaxation Between Supine and Sitting Postures in Eyes-closed Condition.

作者信息

George Christy, Gulia Kamalesh K

机构信息

Department of Computational Biology & Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India.

Department of Applied Biology, Biomedical Technology Wing, Satelmond Palace, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India.

出版信息

Ann Neurosci. 2025 Jun 5:09727531251341665. doi: 10.1177/09727531251341665.

Abstract

BACKGROUND

Brain relaxation is attained using several techniques while sleep remains nature's ultimate remedy. Currently, various machine learning (ML) tools are applied to identify and understand the neural correlates of relaxation from the electroencephalography (EEG) signals. Majority of earlier studies focused on comparing power in the EEG bands during eyes-open and eyes-closed resting state paradigm to train the datasets. However, several Yogic practices are performed using sitting and supine positions.

PURPOSE

This study was aimed to elucidate the relaxation correlates in EEG between supine and sitting position during eyes-closed condition using ML classifiers.

METHODS

EEG signals were recorded on five different days from O1, OZ, O2, C3, CZ, C4, F3, FZ and F4 brain region using nine unipolar electrodes for 25 minutes during eyes-closed supine and eyes-closed sitting postures each on, along with electrocardiogram (ECG) for heart rate variability (HRV) analysis in a healthy participant. Relaxation was assessed by extracting the relative power of the alpha and theta waves from the EEG data and corroborated with the alpha and theta lateralisation index (LI) and HRV parameters. These EEG metrics were analysed by leveraging ML classifiers (K-nearest neighbours (KNN), support vector machine(SVM), random forest (RF) and XGBoost) for relaxation states under sitting and supine states.

RESULTS

Out of all the used classifiers, performance indices of SVM excelled in classifying relaxation states from the EEG alpha and theta band data that was verified with the HRV data and correlated with LI.

CONCLUSION

This study demonstrates that ML especially the SVM was effective in classifying the relaxation states during different postures from the EEG. LI and HRV metrics effectively decoded the underlying message in the EEG and ECG respectively.

摘要

背景

人们使用多种技术来实现大脑放松,而睡眠仍然是大自然的终极疗法。目前,各种机器学习(ML)工具被用于从脑电图(EEG)信号中识别和理解放松的神经关联。大多数早期研究集中在比较睁眼和闭眼静息状态范式下EEG频段的功率,以训练数据集。然而,一些瑜伽练习是在坐姿和仰卧位进行的。

目的

本研究旨在使用ML分类器阐明闭眼状态下仰卧位和坐位时EEG中的放松关联。

方法

在一名健康参与者中,使用九个单极电极在五个不同的日子里,分别在闭眼仰卧和闭眼坐姿下,从O1、OZ、O2、C3、CZ、C4、F3、FZ和F4脑区记录25分钟的EEG信号,同时记录心电图(ECG)以进行心率变异性(HRV)分析。通过从EEG数据中提取α波和θ波的相对功率来评估放松情况,并与α波和θ波偏侧化指数(LI)以及HRV参数进行对照。利用ML分类器(K近邻(KNN)、支持向量机(SVM)、随机森林(RF)和XGBoost)对这些EEG指标进行分析,以确定仰卧位和坐位下的放松状态。

结果

在所有使用的分类器中,SVM的性能指标在根据EEG的α波和θ波频段数据对放松状态进行分类方面表现出色,这一结果通过HRV数据得到验证,并与LI相关。

结论

本研究表明,ML尤其是SVM能够有效地根据EEG对不同姿势下的放松状态进行分类。LI和HRV指标分别有效地解码了EEG和ECG中的潜在信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a9/12141261/15c5b7afa112/10.1177_09727531251341665-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验