Janvrin Winford, Martin Jacob, Hancock Daniel, Varillas Angelo, Downey Austin R J, Pellechia Perry J, Satme Joud, Won Sang Hee
University of South Carolina, Department of Mechanical Engineering, Columbia SC, United States.
University of South Carolina, Department of Physics and Astronomy, Columbia SC, United States.
HardwareX. 2025 Apr 29;22:e00651. doi: 10.1016/j.ohx.2025.e00651. eCollection 2025 Jun.
This paper presents a compact, low-cost time-domain nuclear magnetic resonance (TD-NMR) system based on a 0.5 T permanent magnet designed for in-situ H measurements. Unlike conventional high-field nuclear magnetic resonance (NMR) spectrometers, this system emphasizes relaxation times rather than chemical shifts, enabling material property analysis without large magnets or complex spectral processing. The hardware employs an off-the-shelf data acquisition and control system along with a custom PCB for signal conditioning, ensuring straightforward deployment and reduced costs. The system's core sequence is a Carr-Purcell-Meiboom-Gill pulse train, chosen for efficient relaxation measurements under varying magnetic susceptibilities. By focusing on relaxation measurements, this approach bypasses complexities of high-resolution spectroscopy, enhances signal-to-noise in low-field conditions, and enables robust characterization across challenging environmental settings. We validate the system using aqueous Copper(II) sulfate solutions, correlating T values with copper concentrations to simulate environmental heavy metal contamination monitoring. Prior work has demonstrated versatility in fuel property analysis and environmental sensing, confirming broad applicability for this portable platform. While packaging and integration with ancillary equipment (e.g., flow-through systems) are not covered, the platform serves as a versatile foundation for specialized deployments. Its open-source design and affordability aim to democratize NMR technology and extending its utility beyond conventional laboratory environments. This accessible configuration fosters widespread educational and professional use.
本文介绍了一种基于0.5 T永久磁铁的紧凑型、低成本时域核磁共振(TD-NMR)系统,该系统专为原位氢测量而设计。与传统的高场核磁共振(NMR)光谱仪不同,该系统强调弛豫时间而非化学位移,无需大型磁铁或复杂的光谱处理即可进行材料特性分析。硬件采用现成的数据采集和控制系统以及定制的印刷电路板(PCB)进行信号调理,确保了简单的部署并降低了成本。该系统的核心序列是Carr-Purcell-Meiboom-Gill脉冲序列,该序列被选用于在不同磁化率下进行高效的弛豫测量。通过专注于弛豫测量,这种方法绕过了高分辨率光谱学的复杂性,提高了低场条件下的信噪比,并能够在具有挑战性的环境中进行稳健的表征。我们使用硫酸铜水溶液对该系统进行了验证,将T值与铜浓度相关联,以模拟环境重金属污染监测。先前的工作已经证明了该系统在燃料特性分析和环境传感方面的多功能性,证实了该便携式平台具有广泛的适用性。虽然未涉及包装以及与辅助设备(如流通系统)的集成,但该平台为专门的应用提供了一个多功能的基础。其开源设计和可承受性旨在使NMR技术民主化,并将其应用范围扩展到传统实验室环境之外。这种易于使用的配置促进了广泛的教育和专业应用。