革新血液系统疾病诊断:揭示人工智能的作用
Revolutionizing hematological disorder diagnosis: unraveling the role of artificial intelligence.
作者信息
Obeagu Emmanuel Ifeanyi
机构信息
Department of Biomedical and Laboratory Science, Africa University, Mutare, Zimbabwe.
出版信息
Ann Med Surg (Lond). 2025 Apr 2;87(6):3445-3457. doi: 10.1097/MS9.0000000000003227. eCollection 2025 Jun.
The integration of artificial intelligence (AI) into medical diagnostics is transforming the landscape of healthcare, particularly in hematology. AI technologies, leveraging advanced machine learning algorithms and big data analytics, are revolutionizing the diagnosis of hematological disorders such as anemia, leukemia, and lymphoma. This review explores how AI enhances diagnostic accuracy, efficiency, and patient outcomes by processing complex datasets and identifying patterns beyond human capability. AI-driven advancements in hematology include innovations in image analysis, genomic data interpretation, and predictive modeling. Convolutional neural networks analyze blood smear images with high precision, detecting subtle morphological abnormalities and classifying blood cells. Machine learning models interpret genomic data, identifying genetic mutations linked to specific disorders, which is crucial for diagnosing hereditary blood conditions and cancers. Predictive modeling, based on historical patient data, forecasts disease progression and treatment responses, enabling personalized patient management. Despite the promising benefits, the implementation of AI in hematological diagnostics faces challenges such as ensuring data quality and integration, addressing ethical and regulatory concerns, and maintaining transparency and accountability of AI algorithms. Ongoing research and collaboration between clinicians, data scientists, and regulatory bodies are essential to advance AI capabilities and ensure safe and effective solutions. As AI continues to evolve, its integration into hematology holds significant promise for improving diagnostic practices and patient care.
将人工智能(AI)整合到医学诊断中正在改变医疗保健格局,尤其是在血液学领域。人工智能技术利用先进的机器学习算法和大数据分析,正在彻底改变贫血、白血病和淋巴瘤等血液系统疾病的诊断方式。本综述探讨了人工智能如何通过处理复杂数据集和识别超出人类能力范围的模式来提高诊断准确性、效率和患者治疗效果。人工智能在血液学领域的驱动进展包括图像分析、基因组数据解读和预测建模方面的创新。卷积神经网络能高精度分析血液涂片图像,检测细微的形态异常并对血细胞进行分类。机器学习模型解读基因组数据,识别与特定疾病相关的基因突变,这对于诊断遗传性血液疾病和癌症至关重要。基于患者历史数据的预测建模可预测疾病进展和治疗反应,实现个性化的患者管理。尽管有这些令人期待的好处,但人工智能在血液学诊断中的应用面临诸多挑战,如确保数据质量和整合、解决伦理和监管问题以及保持人工智能算法的透明度和问责制。临床医生、数据科学家和监管机构之间持续的研究与合作对于提升人工智能能力以及确保安全有效的解决方案至关重要。随着人工智能不断发展,其融入血液学对于改善诊断实践和患者护理具有重大前景。
相似文献
Ann Med Surg (Lond). 2025-4-2
BMC Oral Health. 2025-4-18
Therap Adv Gastroenterol. 2025-2-23
Clin Chim Acta. 2025-3-1
Medicine (Baltimore). 2025-3-7
Cureus. 2024-10-29
J Multidiscip Healthc. 2024-8-15
Ann Med Surg (Lond). 2025-1-9
本文引用的文献
Sensors (Basel). 2023-11-29
J Cancer Res Clin Oncol. 2023-8
Semin Diagn Pathol. 2023-3
Healthcare (Basel). 2022-12-9