Theodorou Brandon, Dadu Anant, Nalls Mike, Faghri Faraz, Sun Jimeng
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.
Patterns (N Y). 2025 Mar 31;6(5):101212. doi: 10.1016/j.patter.2025.101212. eCollection 2025 May 9.
While individual MRI snapshots provide valuable insights, the longitudinal progression in repeated MRIs often holds more significant diagnostic and prognostic value. However, a scarcity of longitudinal datasets, comprising paired initial and follow-up scans, hinders the application of machine learning for crucial sequential tasks. We address this gap by proposing self-conditioned diffusion with gradient manipulation (SECONDGRAM) to generate absent follow-up imaging features, enabling predictions of MRI developments over time and enriching limited datasets through imputation. SECONDGRAM builds on neural diffusion models and introduces two key contributions: self-conditioned learning to leverage much larger, unlinked datasets and gradient manipulation to combat instability and overfitting in a low-data setting. We evaluate SECONDGRAM on the UK Biobank dataset and show that it not only models MRI patterns better than existing baselines but also enhances training datasets to achieve better downstream results over naive approaches.
虽然单个MRI快照能提供有价值的见解,但重复MRI中的纵向进展通常具有更重要的诊断和预后价值。然而,缺乏包含配对的初始扫描和随访扫描的纵向数据集,阻碍了机器学习在关键序列任务中的应用。我们通过提出带有梯度操纵的自条件扩散(SECONDGRAM)来填补这一空白,以生成缺失的随访成像特征,从而能够预测MRI随时间的发展,并通过插补来丰富有限的数据集。SECONDGRAM建立在神经扩散模型的基础上,并引入了两个关键贡献:利用大得多的、不相关的数据集进行自条件学习,以及在低数据环境中对抗不稳定性和过拟合的梯度操纵。我们在英国生物银行数据集上评估了SECONDGRAM,结果表明它不仅比现有的基线模型更好地模拟了MRI模式,还增强了训练数据集,以比简单方法获得更好的下游结果。