Naciri Lala Chaimae, Cabini Raffaella Fiamma, Melis Melania, Crnjar Roberto, Pizzagalli Diego Ulisse, Tomassini Barbarossa Iole
Department of Biomedical Sciences, University of Cagliari, Monserrato, CA 09042, Italy.
Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland.
Comput Struct Biotechnol J. 2025 May 14;27:1927-1934. doi: 10.1016/j.csbj.2025.05.014. eCollection 2025.
Fungiform papillae (FPs) are fundamental for taste perception, as they contain the taste sensory cells responsible for detecting taste stimuli. Variations in the number and functionality of FPs among individuals lead to differences in taste perception, impacting the ability to identify nutrient-rich foods, health, and the joy of consuming tasty foods. Detecting FPs is a complex and time-consuming task, and there is no consensus on manual and automated methods for their identification and analysis.
This work aimed to provide an efficient, reliable, and automatic method for FP identification on the tongue, considering the physiological variations in morphology and distribution among subjects.
We used three different Convolutional Neural Networks as a regression task on 175 images of the tongue, the Classic U-Net, the MultiResUNet, and the Optimized U-Net, designed to enhance the performance also when it must identify FPs in challenging input images.
The Optimized U-Net showed the best performance by achieving the lowest errors and the highest similarity between Ground Truths and prediction values, and the more balanced detection of True Positives, Untrue Negatives, and Untrue Positives.
Our results show that the Optimized U-Net achieved the highest stability, accuracy, and robustness in learning and prediction of FPs with challenging morphologies. The ability to automatically detect FPs has important implications for understanding individual differences in taste perception, which could eventually help in diagnosing taste disorders or guiding personalized nutrition plans.
菌状乳头(FPs)对于味觉感知至关重要,因为它们包含负责检测味觉刺激的味觉感觉细胞。个体之间菌状乳头数量和功能的差异会导致味觉感知的不同,影响识别富含营养食物的能力、健康状况以及享受美味食物的愉悦感。检测菌状乳头是一项复杂且耗时的任务,对于其识别和分析的手动及自动化方法尚无共识。
考虑到个体间形态和分布的生理差异,本研究旨在提供一种高效、可靠且自动的舌部菌状乳头识别方法。
我们使用三种不同的卷积神经网络对175张舌部图像进行回归任务,即经典U-Net、多分辨率U-Net和优化U-Net,旨在提高在具有挑战性的输入图像中识别菌状乳头时的性能。
优化U-Net表现最佳,误差最低,预测值与真实值之间的相似度最高,对真阳性、假阴性和假阳性的检测更加均衡。
我们的结果表明,优化U-Net在学习和预测具有挑战性形态的菌状乳头时具有最高的稳定性、准确性和鲁棒性。自动检测菌状乳头的能力对于理解个体味觉感知差异具有重要意义,最终可能有助于诊断味觉障碍或指导个性化营养计划。