Suppr超能文献

脑-体线粒体分布模式缺乏连贯性,提示存在组织特异性调节机制。

Brain-body mitochondrial distribution patterns lack coherence and point to tissue-specific regulatory mechanisms.

作者信息

Devine Jack, Monzel Anna S, Shire David, Rosenberg Ayelet M, Junker Alex, Cohen Alan A, Picard Martin

机构信息

Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States.

Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY 10032, United States.

出版信息

Life Metab. 2025 Apr 12;4(3):loaf012. doi: 10.1093/lifemeta/loaf012. eCollection 2025 Jun.

Abstract

Energy transformation capacity is generally assumed to be a coherent individual trait driven by genetic and environmental factors. This predicts that some individuals should have consistently high, while others show consistently low mitochondrial oxidative phosphorylation (OxPhos) capacity across organ systems. Here, we test this assumption using multi-tissue molecular and enzymatic assays in mice and humans. Across up to 22 mouse tissues, neither mitochondrial OxPhos capacity nor mitochondrial DNA (mtDNA) density was correlated between tissues (median = -0.01 to 0.16), indicating that animals with high mitochondrial content or capacity in one tissue may have low content or capacity in other tissues. Similarly, RNA sequencing (RNAseq)-based indices of mitochondrial expression across 45 tissues from 948 women and men (genotype-tissue expression [GTEx]) showed only small to moderate coherence between some tissues, such as between brain regions ( = 0.26), but not between brain-body tissue pairs ( = 0.01). The mtDNA copy number (mtDNAcn) also lacked coherence across human tissues. Mechanistically, tissue-specific differences in mitochondrial gene expression were partially attributable to (i) tissue-specific activation of energy sensing pathways, including the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), the integrated stress response (ISR), and other molecular regulators of mitochondrial biology, and (ii) proliferative activity across tissues. Finally, we identify subgroups of individuals with distinct mitochondrial distribution strategies that map onto distinct clinical phenotypes. These data raise the possibility that tissue-specific energy sensing pathways may contribute to idiosyncratic mitochondrial distribution patterns among individuals.

摘要

能量转换能力通常被认为是一种由遗传和环境因素驱动的连贯个体特征。这预示着一些个体在各个器官系统中应该始终具有较高的线粒体氧化磷酸化(OxPhos)能力,而另一些个体则始终表现出较低的能力。在这里,我们使用小鼠和人类的多组织分子和酶学检测来检验这一假设。在多达22种小鼠组织中,组织间的线粒体OxPhos能力和线粒体DNA(mtDNA)密度均无相关性(中位数 = -0.01至0.16),这表明在一个组织中线粒体含量或能力高的动物,在其他组织中可能含量或能力较低。同样,基于RNA测序(RNAseq)的948名男性和女性(基因型-组织表达[GTEx])45种组织中线粒体表达指标显示,某些组织之间只有小到中等程度的一致性,如脑区之间(= 0.26),但脑-体组织对之间没有一致性(= 0.01)。人类组织中的mtDNA拷贝数(mtDNAcn)也缺乏一致性。从机制上讲,线粒体基因表达的组织特异性差异部分归因于:(i)能量感应途径的组织特异性激活,包括转录共激活因子过氧化物酶体增殖物激活受体γ共激活因子1-α(PGC-1α)、综合应激反应(ISR)以及线粒体生物学的其他分子调节因子;(ii)各组织的增殖活性。最后,我们确定了具有不同线粒体分布策略的个体亚组,这些亚组与不同的临床表型相关。这些数据增加了组织特异性能量感应途径可能导致个体间线粒体分布模式特异的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验