Suppr超能文献

MedLesSynth-LD:使用基于物理的噪声模型进行病变合成,以在低数据量医学成像模式下实现稳健的病变分割。

MedLesSynth-LD: Lesion synthesis using physics-based noise models for robust lesion segmentation in low-data medical imaging regimes.

作者信息

Narayanan Ramanujam, Sundaresan Vaanathi

机构信息

Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, 560012, Karnataka, India.

出版信息

Pattern Recognit Lett. 2025 Feb;188:155-163. doi: 10.1016/j.patrec.2024.12.011.

Abstract

Training models for robust lesion segmentation in medical imaging relies on the availability of sufficiently large pathological datasets and high-quality manual annotations. Hence, training such models is challenging in low-data regimes, even for localised lesions with defined boundaries, due to the lack of representation of variations in contrast, texture and sizes. In this work, we proposed a lesion simulation method, MedLesSynth-LD, to overcome the lack of diversity in localised lesion characteristics for training robust segmentation models. In MedLesSynth-LD, we used noise models inherently based on the physics involved in the acquisition of modalities to generate sufficiently realistic lesion textures by perturbing healthy tissues. Later, we localised these perturbations within masks defined by composites of ellipsoids (thus forming random shapes) and blended them with the input image with varying contrast. The lesion simulation step does not require training and can be tailored to generate defined, localised lesions to introduce sufficient variability (in size, shape, texture and contrast) in the training data pool. We evaluated the performance of a downstream lesion segmentation task using simulated lesionsfor multiple publicly available datasets across imaging modalities and organs: Brain MRI for tumour and white matter hyperintensity segmentation, liver CT for tumour segmentation, breast ultrasound for tumour segmentation, and retinal fundus imaging for exudate segmentation. Using only 75% of labelled real-world data, the proposed method significantly improved lesion segmentation compared to real data-based fully supervised training with an 16% mean increase in the Dice score (DSC) and 33% mean decrease in the normalised 95th percentile of the Hausdorff distance (HD95 (norm)). The proposed method also performed better than state-of-the-art lesion segmentation methods in low-data regimes, with an 10% higher mean DSC and a 19% mean decrease in HD95 (norm). The source code is available at https://github.com/Ramanujam-N/MedLesSynth-LD [commit SHA cc2b15b].

摘要

训练用于医学成像中稳健病变分割的模型依赖于足够大的病理数据集和高质量的手动标注。因此,即使对于具有明确边界的局部病变,在低数据量情况下训练此类模型也具有挑战性,因为缺乏对比度、纹理和大小变化的表示。在这项工作中,我们提出了一种病变模拟方法MedLesSynth-LD,以克服用于训练稳健分割模型的局部病变特征缺乏多样性的问题。在MedLesSynth-LD中,我们使用基于模态采集所涉及物理原理的噪声模型,通过扰动健康组织来生成足够逼真的病变纹理。之后,我们将这些扰动定位在由椭球体合成定义的掩码内(从而形成随机形状),并将它们与具有不同对比度的输入图像混合。病变模拟步骤不需要训练,可以进行定制以生成明确的局部病变,从而在训练数据池中引入足够的变异性(在大小、形状、纹理和对比度方面)。我们使用模拟病变对多个跨成像模态和器官的公开可用数据集评估了下游病变分割任务的性能:用于肿瘤和白质高信号分割的脑部MRI、用于肿瘤分割的肝脏CT、用于肿瘤分割的乳腺超声以及用于渗出物分割的视网膜眼底成像。仅使用75%的标记真实世界数据,与基于真实数据的全监督训练相比,所提出的方法显著改善了病变分割,Dice分数(DSC)平均提高了16%,Hausdorff距离的归一化第95百分位数(HD95(norm))平均降低了33%。在所提出的方法在低数据量情况下也比现有最先进的病变分割方法表现更好,平均DSC高10%,HD95(norm)平均降低19%。源代码可在https://github.com/Ramanujam-N/MedLesSynth-LD [提交SHA cc2b15b]获取。

相似文献

3
Adaptive wavelet-VNet for single-sample test time adaptation in medical image segmentation.
Med Phys. 2024 Dec;51(12):8865-8881. doi: 10.1002/mp.17423. Epub 2024 Oct 1.
6
URCA: Uncertainty-based region clipping algorithm for semi-supervised medical image segmentation.
Comput Methods Programs Biomed. 2024 Sep;254:108278. doi: 10.1016/j.cmpb.2024.108278. Epub 2024 Jun 11.
8
QMaxViT-Unet+: A query-based MaxViT-Unet with edge enhancement for scribble-supervised segmentation of medical images.
Comput Biol Med. 2025 Mar;187:109762. doi: 10.1016/j.compbiomed.2025.109762. Epub 2025 Feb 6.
9
Latent shape image learning via disentangled representation for cross-sequence image registration and segmentation.
Int J Comput Assist Radiol Surg. 2023 Apr;18(4):621-628. doi: 10.1007/s11548-022-02788-9. Epub 2022 Nov 8.
10
Self-derived organ attention for unpaired CT-MRI deep domain adaptation based MRI segmentation.
Phys Med Biol. 2020 Oct 7;65(20):205001. doi: 10.1088/1361-6560/ab9fca.

本文引用的文献

1
Parallel-stream fusion of scan-specific and scan-general priors for learning deep MRI reconstruction in low-data regimes.
Comput Biol Med. 2023 Dec;167:107610. doi: 10.1016/j.compbiomed.2023.107610. Epub 2023 Oct 20.
2
Slim UNETR: Scale Hybrid Transformers to Efficient 3D Medical Image Segmentation Under Limited Computational Resources.
IEEE Trans Med Imaging. 2024 Mar;43(3):994-1005. doi: 10.1109/TMI.2023.3326188. Epub 2024 Mar 5.
3
Simulation of Laser Profilometer Measurements in the Presence of Speckle Using Perlin Noise.
Sensors (Basel). 2023 Sep 2;23(17):7624. doi: 10.3390/s23177624.
4
Unsupervised Medical Image Translation With Adversarial Diffusion Models.
IEEE Trans Med Imaging. 2023 Dec;42(12):3524-3539. doi: 10.1109/TMI.2023.3290149. Epub 2023 Nov 30.
5
Self-Supervised Tumor Segmentation With Sim2Real Adaptation.
IEEE J Biomed Health Inform. 2023 Sep;27(9):4373-4384. doi: 10.1109/JBHI.2023.3240844. Epub 2023 Sep 6.
6
The Liver Tumor Segmentation Benchmark (LiTS).
Med Image Anal. 2023 Feb;84:102680. doi: 10.1016/j.media.2022.102680. Epub 2022 Nov 17.
7
Half-UNet: A Simplified U-Net Architecture for Medical Image Segmentation.
Front Neuroinform. 2022 Jun 9;16:911679. doi: 10.3389/fninf.2022.911679. eCollection 2022.
8
Dataset of breast ultrasound images.
Data Brief. 2019 Nov 21;28:104863. doi: 10.1016/j.dib.2019.104863. eCollection 2020 Feb.
9
UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation.
IEEE Trans Med Imaging. 2020 Jun;39(6):1856-1867. doi: 10.1109/TMI.2019.2959609. Epub 2019 Dec 13.
10
IDRiD: Diabetic Retinopathy - Segmentation and Grading Challenge.
Med Image Anal. 2020 Jan;59:101561. doi: 10.1016/j.media.2019.101561. Epub 2019 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验