Suppr超能文献

用于基于物联网的远程患者监测系统的PhysioDimClassifier不平衡数据分类器模型。

PhysioDimClassifier-imbalance data classifier model for IoMT-based remote patient monitoring systems.

作者信息

Johar Sayyed, Manjula G R

机构信息

Dept of AIML, JNNCE-Shivamogga, Visvesvaraya Technological University, Belagavi 590018, India.

Dept of CSE(Data science), JNNCE-Shivamogga, Visvesvaraya Technological University, Belagavi 590018, India.

出版信息

MethodsX. 2025 May 12;14:103362. doi: 10.1016/j.mex.2025.103362. eCollection 2025 Jun.

Abstract

Remote patient monitoring systems (RPMS) using the Internet of Medical Things (IoMT) continuously collect and exchange periodic sensor-observations through communication modules. However, these data streams often contain relevant and irrelevant series, leading to imbalance issues in physiological disease assessment. This research introduces a PhysioDimClassifier (PDC), a novel model to detect and mitigate imbalanced data in physiological disease diagnosis. The proposed model identifies the likenesses and permanence within observation sequences, classifying them as normal or imbalanced based on monitoring duration and sensor communication time. A rotational tree classifier trackspermanence sequences, ensuring accurate classification of imbalanced data. By analyzingsequence interruptions, the model improves the retention of imbalanced data patterns, reducing misclassification. Experimental validation demonstrates that PDCM enhances data accuracy by up to 12.61 %, improves imbalance data detection by 13.23 %, increases classification rate by 10.98 %, lowers data imbalance by 11.22 %, and decreases assessment time by 10.5 %. These improvements contribute to timely and accurate physiological disease diagnosis in IoMT-based RPMS, optimizing clinical decision-making and patient outcomes. The proposed approach providesa robust, scalable, and efficient solution for handling imbalanced physiological data in real-time healthcare applications.•Introduces PhysioDimClassifier (PDC), a novel model to detect and mitigate imbalanced physiological data.•Employing a rotational tree classifier for sequence performance tracking and imbalance classification.•Enhances classification accuracy and reduces imbalance effects, ensuring improved disease diagnosis in IoMT-based RPMS.

摘要

使用医疗物联网(IoMT)的远程患者监测系统(RPMS)通过通信模块持续收集并交换周期性的传感器观测数据。然而,这些数据流通常包含相关和不相关的序列,从而在生理疾病评估中导致不平衡问题。本研究引入了一种生理维度分类器(PDC),这是一种用于在生理疾病诊断中检测和缓解不平衡数据的新型模型。所提出的模型识别观测序列中的相似性和持久性,根据监测持续时间和传感器通信时间将它们分类为正常或不平衡。一个旋转树分类器跟踪持久性序列,确保对不平衡数据进行准确分类。通过分析序列中断,该模型提高了对不平衡数据模式的保留率,减少了错误分类。实验验证表明,PDCM将数据准确性提高了高达12.61%,将不平衡数据检测提高了13.23%,将分类率提高了10.98%,将数据不平衡降低了11.22%,并将评估时间减少了10.5%。这些改进有助于在基于IoMT的RPMS中及时、准确地进行生理疾病诊断,优化临床决策和患者治疗效果。所提出的方法为实时医疗应用中处理不平衡生理数据提供了一种强大、可扩展且高效的解决方案。

•引入生理维度分类器(PDC),一种用于检测和缓解不平衡生理数据的新型模型。

•采用旋转树分类器进行序列性能跟踪和不平衡分类。

•提高分类准确性并减少不平衡影响,确保在基于IoMT的RPMS中改善疾病诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ef1/12143731/e50acfa99497/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验