Suppr超能文献

开发一种结合腰椎CT、多序列MRI和临床数据的深度学习放射组学模型,以预测腰椎融合术后的高风险相邻节段退变:一项回顾性多中心研究。

Developing a Deep Learning Radiomics Model Combining Lumbar CT, Multi-Sequence MRI, and Clinical Data to Predict High-Risk Adjacent Segment Degeneration Following Lumbar Fusion: A Retrospective Multicenter Study.

作者信息

Zou Congying, Wang Tianyi, Wang Baodong, Fei Qi, Song Hongxing, Zang Lei

机构信息

Department of Orthopedic Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China.

Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.

出版信息

Global Spine J. 2025 Jun 9:21925682251342531. doi: 10.1177/21925682251342531.

Abstract

Study designRetrospective cohort study.ObjectivesDevelop and validate a model combining clinical data, deep learning radiomics (DLR), and radiomic features from lumbar CT and multisequence MRI to predict high-risk patients for adjacent segment degeneration (ASDeg) post-lumbar fusion.MethodsThis study included 305 patients undergoing preoperative CT and MRI for lumbar fusion surgery, divided into training (n = 192), internal validation (n = 83), and external test (n = 30) cohorts. Vision Transformer 3D-based deep learning model was developed. LASSO regression was used for feature selection to establish a logistic regression model. ASDeg was defined as adjacent segment degeneration during radiological follow-up 6 months post-surgery. Fourteen machine learning algorithms were evaluated using ROC curves, and a combined model integrating clinical variables was developed.ResultsAfter feature selection, 21 radiomics, 12 DLR, and 3 clinical features were selected. The linear support vector machine algorithm performed best for the radiomic model, and AdaBoost was optimal for the DLR model. A combined model using these and clinical features was developed, with the multi-layer perceptron as the most effective algorithm. The areas under the curve for training, internal validation, and external test cohorts were 0.993, 0.936, and 0.835, respectively. The combined model outperformed the combined predictions of 2 surgeons.ConclusionsThis study developed and validated a combined model integrating clinical, DLR and radiomic features, demonstrating high predictive performance for identifying high-risk ASDeg patients post-lumbar fusion based on clinical data, CT, and MRI. The model could potentially reduce ASDeg-related revision surgeries, thereby reducing the burden on the public healthcare.

摘要

研究设计

回顾性队列研究。

目的

开发并验证一个结合临床数据、深度学习放射组学(DLR)以及腰椎CT和多序列MRI的放射组学特征的模型,以预测腰椎融合术后相邻节段退变(ASDeg)的高危患者。

方法

本研究纳入了305例行腰椎融合手术术前CT和MRI检查的患者,分为训练组(n = 192)、内部验证组(n = 83)和外部测试组(n = 30)。开发了基于视觉Transformer 3D的深度学习模型。使用LASSO回归进行特征选择以建立逻辑回归模型。ASDeg定义为术后6个月影像学随访期间的相邻节段退变。使用ROC曲线评估了14种机器学习算法,并开发了一个整合临床变量的联合模型。

结果

经过特征选择,选取了21个放射组学特征、12个DLR特征和3个临床特征。线性支持向量机算法在放射组学模型中表现最佳,而AdaBoost在DLR模型中最优。开发了一个使用这些特征和临床特征的联合模型,其中多层感知器是最有效的算法。训练组、内部验证组和外部测试组的曲线下面积分别为0.993、0.936和0.835。联合模型优于两名外科医生的联合预测。

结论

本研究开发并验证了一个整合临床、DLR和放射组学特征的联合模型,证明了基于临床数据、CT和MRI对腰椎融合术后高危ASDeg患者具有较高的预测性能。该模型可能会减少与ASDeg相关的翻修手术,从而减轻公共医疗保健的负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b24/12149169/337a5cccfacb/10.1177_21925682251342531-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验