Suppr超能文献

用于超声计算机断层扫描图像中乳腺病变分割的混合自适应注意力深度监督引导U型网络

Hybrid adaptive attention deep supervision-guided U-Net for breast lesion segmentation in ultrasound computed tomography images.

作者信息

Liu Xu, Zhou Liang, Cai Mengyuan, Zheng Hongmei, Zeng Shue, Wang Xiang, Wang Yi, Ding Mingyue

机构信息

Department of Bio-Medical Engineering, School of Life Science and Technology, Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.

WeSee Medical Imaging Inc, Wuhan, 430070, Hubei, China.

出版信息

Med Biol Eng Comput. 2025 Jun 9. doi: 10.1007/s11517-025-03377-z.

Abstract

Breast cancer is the second deadliest cancer among women after lung cancer. Though the breast cancer death rate continues to decline in the past 20 years, the stages IV and III breast cancer death rates remain high. Therefore, an automated breast cancer diagnosis system is of great significance for early screening of breast lesions to improve the survival rate of patients. This paper proposes a deep learning-based network hybrid adaptive attention deep supervision-guided U-Net (HAA-DSUNet) for breast lesion segmentation of breast ultrasound computed tomography (BUCT) images, which replaces the traditionally sampled convolution module of U-Net with the hybrid adaptive attention module (HAAM), aiming to enlarge the receptive field and probe rich global features while preserving fine details. Moreover, we apply the contrast loss to intermediate outputs as deep supervision to minimize the information loss during upsampling. Finally, the segmentation prediction results are further processed by filtering, segmentation, and morphology to obtain the final results. We conducted the experiment on our two UCT image datasets HCH and HCH-PHMC, and the highest Dice score is 0.8729 and IoU is 0.8097, which outperform all the other state-of-the-art methods. It is demonstrated that our algorithm is effective in segmenting the legion from BUCT images.

摘要

乳腺癌是女性中仅次于肺癌的第二大致命癌症。尽管在过去20年中乳腺癌死亡率持续下降,但IV期和III期乳腺癌的死亡率仍然很高。因此,一个自动化的乳腺癌诊断系统对于早期筛查乳腺病变以提高患者生存率具有重要意义。本文提出了一种基于深度学习的网络——混合自适应注意力深度监督引导的U-Net(HAA-DSUNet),用于乳腺超声计算机断层扫描(BUCT)图像的乳腺病变分割,该网络用混合自适应注意力模块(HAAM)取代了U-Net传统的采样卷积模块,旨在扩大感受野并探测丰富的全局特征,同时保留精细细节。此外,我们将对比损失应用于中间输出作为深度监督,以最小化上采样过程中的信息损失。最后,通过滤波、分割和形态学对分割预测结果进行进一步处理以获得最终结果。我们在我们的两个UCT图像数据集HCH和HCH-PHMC上进行了实验,最高的Dice分数为0.8729,交并比为0.8097,优于所有其他现有最先进的方法。结果表明,我们的算法在从BUCT图像中分割病变方面是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验