Suppr超能文献

通过孔隙结构工程阐明硬碳负极中的钠离子存储行为

Elucidation of the Sodium-Ion Storage Behaviors in Hard Carbon Anodes through Pore Architecture Engineering.

作者信息

Jian Wenbin, Qiu Xueqing, Chen Huaican, Yin Jian, Yin Wen, Alshareef Husam N, Zhang Wenli

机构信息

Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China.

Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.

出版信息

ACS Nano. 2025 Jun 24;19(24):22201-22216. doi: 10.1021/acsnano.5c03700. Epub 2025 Jun 9.

Abstract

Hard carbon stands out as an auspicious anode material for commercial sodium-ion batteries, yet the correlation between plateau-potential capacity and its pore architecture remains poorly understood. In this study, we systematically investigated the sodium-ion storage behavior in hard carbons with tailored pore architecture. The plateau-potential capacity of hard carbon is attributed to the filling of sodium clusters within closed nanopores and open nanopores that are impervious to the solvent molecules of the electrolyte. Small-angle X-ray scattering (SAXS) has been shown to be an effective method for estimating the volume of nanopores that can store sodium clusters. A rapid and user-friendly butanol pycnometry technique is designed to assess the volume of nanopores available for sodium-ion storage. This method has established a linear correlation between the nanopore volume detected and the plateau-potential capacity measured experimentally. We identified two scenarios where the plateau-potential capacity deviates from the congruence linear relationship established by SAXS and butanol pycnometry techniques. First, sodium clusters are unable to fill nanopores larger than 4 nm and could only partially fill those larger than 2 nm. Second, the diffusion of Na ions is impeded in graphene nanodomains with tight interlayer spacing and extended crystalline planes.

摘要

硬碳作为一种适用于商用钠离子电池的阳极材料脱颖而出,然而,平台电位容量与其孔隙结构之间的关系仍鲜为人知。在本研究中,我们系统地研究了具有定制孔隙结构的硬碳中的钠离子存储行为。硬碳的平台电位容量归因于封闭纳米孔和开放纳米孔内钠簇的填充,这些纳米孔对电解质的溶剂分子是不可渗透的。小角X射线散射(SAXS)已被证明是一种估计可存储钠簇的纳米孔体积的有效方法。设计了一种快速且用户友好的丁醇比重瓶法技术,以评估可用于钠离子存储的纳米孔体积。该方法在检测到的纳米孔体积与实验测量的平台电位容量之间建立了线性关系。我们确定了两种情况,其中平台电位容量偏离了由SAXS和丁醇比重瓶法技术建立的一致线性关系。第一,钠簇无法填充大于4nm的纳米孔,并且只能部分填充大于2nm的纳米孔。第二,在具有紧密层间距和扩展晶面的石墨烯纳米域中,Na离子的扩散受到阻碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/006f/12203633/d2a640f79f6e/nn5c03700_0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验