Suppr超能文献

用于临床推理的人工智能:可靠性挑战与循证实践之路。

Artificial intelligence for clinical reasoning: the reliability challenge and path to evidence-based practice.

作者信息

Xu He, Wang Yueqing, Xun Yangqin, Shao Ruitai, Jiao Yang

机构信息

Department of General Practice (General Internal Medicine), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

QJM. 2025 May 19. doi: 10.1093/qjmed/hcaf114.

Abstract

The integration of generative artificial intelligence (AI), particularly large language models (LLMs), into clinical reasoning heralds transformative potential for medical practice. However, their capacity to authentically replicate the complexity of human clinical decision-making remains uncertain-a challenge defined here as the reliability challenge. While studies demonstrate LLMs' ability to pass medical licensing exams and achieve diagnostic accuracy comparable to physicians, critical limitations persist. Crucially, LLMs mimic reasoning patterns rather than executing genuine logical reasoning, and their reliance on outdated or non-regional data undermines clinical relevance. To bridge this gap, we advocate for a synergistic paradigm where physicians leverage advanced clinical expertise while AI evolves toward transparency and interpretability. This requires AI systems to integrate real-time, context-specific evidence, align with local healthcare constraints, and adopt explainable architectures (e.g. multi-step reasoning frameworks or clinical knowledge graphs) to demystify decision pathways. Ultimately, reliable AI for clinical reasoning hinges on harmonizing technological innovation with human oversight, ensuring ethical adherence to beneficence and non-maleficence while advancing evidence-based, patient-centered care.

摘要

生成式人工智能(AI),特别是大语言模型(LLMs),融入临床推理为医疗实践带来了变革潜力。然而,它们能否真正复制人类临床决策的复杂性仍不确定——这里将这一挑战定义为可靠性挑战。虽然研究表明大语言模型有能力通过医学执照考试并达到与医生相当的诊断准确性,但关键局限性依然存在。至关重要的是,大语言模型模仿推理模式而非执行真正的逻辑推理,并且它们对过时或非本地数据的依赖损害了临床相关性。为弥合这一差距,我们倡导一种协同范式,即医生利用先进的临床专业知识,同时人工智能朝着透明性和可解释性发展。这要求人工智能系统整合实时、特定情境的证据,符合当地医疗保健限制,并采用可解释的架构(如多步推理框架或临床知识图谱)来揭开决策路径的神秘面纱。最终,用于临床推理的可靠人工智能取决于将技术创新与人类监督相协调,确保在推进以证据为基础、以患者为中心的医疗时,在伦理上坚持行善和不伤害原则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验