Gazzari-Jara Sasha, Herrera Barbara
QTC, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile.
J Phys Chem A. 2025 Jun 19;129(24):5313-5325. doi: 10.1021/acs.jpca.5c02784. Epub 2025 Jun 9.
Our study is centered on the reactivity of copper(I) carbenoids in C-H activation reactions, particularly the role of the carbenoid carbon. The selective activation of inert C-H bonds, leading to the direct transformation of simple hydrocarbons into functionalized molecules, is a key area of organic chemistry research. Our theoretical density functional theory (DFT) study at the M06-2X/cc-PVTZ/LANL2DZ level provides insights into the catalytic C-H activation and alkyl insertion mechanisms using these copper(I) carbenoids. We analyze the effects of electron-donating (EDG: OH, CH, and NH) and electron-withdrawing groups (EWG: Cl, COOH, CN) on the reactivity, selectivity, and stability of copper carbenoids. Our systematic analysis using conceptual DFT (c-DFT), natural bond orbital (NBO), reaction force (RF), activation strain model (ASM), and energy decomposition analysis (EDA) reveals that the electronic nature of substituents significantly modulates the electrophilicity of the carbenoid carbon, thereby affecting the strength of the Cu-Cα bond, reaction barriers, and the type of mechanism. We identify carbenoids substituted with balanced EDG/EWG pairs as optimal candidates, providing kinetically and thermodynamically favorable pathways for the selective C-H activation via electrophilic substitution involving a σ-complex intermediate.
我们的研究集中于铜(I)类卡宾在C-H活化反应中的反应活性,特别是类卡宾碳的作用。惰性C-H键的选择性活化,即把简单烃类直接转化为功能化分子,是有机化学研究的一个关键领域。我们在M06-2X/cc-PVTZ/LANL2DZ水平上进行的理论密度泛函理论(DFT)研究,深入探讨了使用这些铜(I)类卡宾的催化C-H活化和烷基插入机理。我们分析了供电子基团(EDG:OH、CH和NH)和吸电子基团(EWG:Cl、COOH、CN)对铜类卡宾的反应活性、选择性和稳定性的影响。我们使用概念密度泛函理论(c-DFT)、自然键轨道(NBO)、反应力(RF)、活化应变模型(ASM)和能量分解分析(EDA)进行的系统分析表明,取代基的电子性质显著调节类卡宾碳的亲电性,从而影响Cu-Cα键的强度、反应势垒和反应机理类型。我们确定用平衡的EDG/EWG对取代的类卡宾是最佳候选物,为通过涉及σ-络合物中间体的亲电取代进行选择性C-H活化提供了动力学和热力学上有利的途径。