Suppr超能文献

跨任务训练循环神经网络测量与控制解的退化

Measuring and Controlling Solution Degeneracy across Task-Trained Recurrent Neural Networks.

作者信息

Huang Ann, Singh Satpreet H, Martinelli Flavio, Rajan Kanaka

机构信息

Harvard University, Kempner Institute.

Harvard Medical School, Kempner Institute.

出版信息

ArXiv. 2025 May 28:arXiv:2410.03972v2.

Abstract

Task-trained recurrent neural networks (RNNs) are widely used in neuroscience and machine learning to model dynamical computations. To gain mechanistic insight into how neural systems solve tasks, prior work often reverse-engineers individual trained networks. However, different RNNs trained on the same task and achieving similar performance can exhibit strikingly different internal solutions-a phenomenon known as solution degeneracy. Here, we develop a unified framework to systematically quantify and control solution degeneracy across three levels: behavior, neural dynamics, and weight space. We apply this framework to 3,400 RNNs trained on four neuroscience-relevant tasks-flip-flop memory, sine wave generation, delayed discrimination, and path integration-while systematically varying task complexity, learning regime, network size, and regularization. We find that higher task complexity and stronger feature learning reduce degeneracy in neural dynamics but increase it in weight space, with mixed effects on behavior. In contrast, larger networks and structural regularization reduce degeneracy at all three levels. These findings empirically validate the Contravariance Principle and provide practical guidance for researchers aiming to tailor RNN solutions-whether to uncover shared neural mechanisms or to model individual variability observed in biological systems. This work provides a principled framework for quantifying and controlling solution degeneracy in task-trained RNNs, offering new tools for building more interpretable and biologically grounded models of neural computation.

摘要

经过任务训练的循环神经网络(RNN)在神经科学和机器学习中被广泛用于对动态计算进行建模。为了深入了解神经系统如何解决任务,先前的工作通常对单个训练好的网络进行逆向工程。然而,在相同任务上训练且性能相似的不同RNN可能会表现出截然不同的内部解决方案——这种现象被称为解决方案退化。在这里,我们开发了一个统一的框架,用于在行为、神经动力学和权重空间三个层面系统地量化和控制解决方案退化。我们将这个框架应用于3400个在四个与神经科学相关的任务上训练的RNN——触发器记忆、正弦波生成、延迟辨别和路径积分——同时系统地改变任务复杂性、学习方式、网络规模和正则化。我们发现,更高的任务复杂性和更强的特征学习会降低神经动力学中的退化,但会增加权重空间中的退化,对行为有混合影响。相比之下,更大的网络和结构正则化会降低所有三个层面的退化。这些发现从实证上验证了协变原理,并为旨在定制RNN解决方案的研究人员提供了实用指导——无论是为了揭示共享的神经机制还是为了对生物系统中观察到的个体变异性进行建模。这项工作为量化和控制任务训练的RNN中的解决方案退化提供了一个有原则的框架,为构建更具可解释性和生物学基础的神经计算模型提供了新工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16eb/12148090/46c6ba8a697c/nihpp-2410.03972v2-f0009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验