Suppr超能文献

优化与变异性可以共存。

Optimization and variability can coexist.

作者信息

Bauer Marianne, Bialek William, Goddard Chase, Holmes Caroline M, Krishnamurthy Kamesh, Palmer Stephanie E, Pang Rich, Schwab David J, Susman Lee

机构信息

Joseph Henry Laboratories of Physics, Princeton University.

Lewis-Sigler Institute for Integrative Genomics, Princeton University.

出版信息

ArXiv. 2025 May 29:arXiv:2505.23398v1.

Abstract

Many biological systems perform close to their physical limits, but promoting this optimality to a general principle seems to require implausibly fine tuning of parameters. Using examples from a wide range of systems, we show that this intuition is wrong. Near an optimum, functional performance depends on parameters in a "sloppy" way, with some combinations of parameters being only weakly constrained. Absent any other constraints, this that we should observe widely varying parameters, and we make this precise: the entropy in parameter space can be extensive even if performance on average is very close to optimal. This removes a major objection to optimization as a general principle, and rationalizes the observed variability.

摘要

许多生物系统都在接近其物理极限的状态下运行,但要将这种最优性推广为一个普遍原则,似乎需要对参数进行精细到难以置信的微调。通过来自广泛系统的示例,我们表明这种直觉是错误的。在最优状态附近,功能性能对参数的依赖方式“很宽松”,某些参数组合受到的约束很弱。在没有任何其他约束的情况下,这意味着我们应该观察到参数有很大差异,我们对此进行了精确表述:即使平均性能非常接近最优,参数空间中的熵也可能是广泛存在的。这消除了将优化作为一个普遍原则的一个主要障碍,并使观察到的变异性变得合理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1993/12148085/1f94d62b1c0b/nihpp-2505.23398v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验