Teja M Darshan, Rayalu G Mokesh
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India.
BMC Public Health. 2025 Jun 10;25(1):2150. doi: 10.1186/s12889-025-23318-7.
Cardiovascular disease (CVD) is a primary cause of death in India, accounting for a significant portion of the global CVD burden. This study looks at statistics on heart disease mortality from the Institute for Health Metrics and Evaluation (IHME) from 1990 to 2021, divided into five age groups: 0-5, 6-15, 16-49, 50-69, and 70 + . We used both classic ARIMA and hybrid models that combined ARIMA with machine learning techniques such as Random Forest, Support Vector Machine (SVM), XGBoost, and GARCH to anticipate mortality trends. Model performance was assessed using the Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Across several age groups, the ARIMA + SVM model outperformed standalone ARIMA in terms of accuracy, with RMSE improvements of up to 15.6%. The 70 + population has the greatest mortality rates, highlighting the urgent need for focused healthcare treatments. These hybrid models are valuable tools for healthcare legislators in developing preventative programs, allocating resources effectively, and prioritizing treatment for high-risk age groups, especially the elderly, since they improve forecasting accuracy and offer interpretive insights. Given India's growing cardiovascular disease load, our results highlight how predictive analytics may support data-driven public health planning.
心血管疾病(CVD)是印度的主要死因,在全球心血管疾病负担中占很大比例。本研究考察了健康指标与评估研究所(IHME)1990年至2021年的心脏病死亡率统计数据,分为五个年龄组:0 - 5岁、6 - 15岁、16 - 49岁、50 - 69岁和70岁及以上。我们使用了经典的自回归积分移动平均模型(ARIMA)以及将ARIMA与随机森林、支持向量机(SVM)、极端梯度提升(XGBoost)和广义自回归条件异方差模型(GARCH)等机器学习技术相结合的混合模型来预测死亡率趋势。使用均方根误差(RMSE)和平均绝对百分比误差(MAPE)评估模型性能。在多个年龄组中,ARIMA + SVM模型在准确性方面优于单独的ARIMA,RMSE最多提高了15.6%。70岁及以上人群的死亡率最高,凸显了对针对性医疗治疗的迫切需求。这些混合模型是医疗保健立法者制定预防计划、有效分配资源以及为高风险年龄组(尤其是老年人)优先安排治疗的宝贵工具,因为它们提高了预测准确性并提供了解释性见解。鉴于印度心血管疾病负担不断增加,我们的结果凸显了预测分析如何支持数据驱动的公共卫生规划。