文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

OmicVerse:一个连接和深化批量及单细胞测序见解的框架。

OmicVerse: a framework for bridging and deepening insights across bulk and single-cell sequencing.

机构信息

School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.

Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.

出版信息

Nat Commun. 2024 Jul 16;15(1):5983. doi: 10.1038/s41467-024-50194-3.


DOI:10.1038/s41467-024-50194-3
PMID:39013860
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11252408/
Abstract

Single-cell sequencing is frequently affected by "omission" due to limitations in sequencing throughput, yet bulk RNA-seq may contain these ostensibly "omitted" cells. Here, we introduce the single cell trajectory blending from Bulk RNA-seq (BulkTrajBlend) algorithm, a component of the OmicVerse suite that leverages a Beta-Variational AutoEncoder for data deconvolution and graph neural networks for the discovery of overlapping communities. This approach effectively interpolates and restores the continuity of "omitted" cells within single-cell RNA sequencing datasets. Furthermore, OmicVerse provides an extensive toolkit for both bulk and single cell RNA-seq analysis, offering seamless access to diverse methodologies, streamlining computational processes, fostering exquisite data visualization, and facilitating the extraction of significant biological insights to advance scientific research.

摘要

单细胞测序经常受到测序通量限制的“遗漏”影响,但批量 RNA-seq 可能包含这些表面上的“遗漏”细胞。在这里,我们引入了从 Bulk RNA-seq 进行单细胞轨迹混合(BulkTrajBlend)算法,这是 OmicVerse 套件的一个组成部分,它利用了贝叶斯变分自动编码器进行数据去卷积和图神经网络进行重叠社区的发现。这种方法可以有效地内插和恢复单细胞 RNA 测序数据集内“遗漏”细胞的连续性。此外,OmicVerse 还为批量和单细胞 RNA-seq 分析提供了一个广泛的工具包,无缝访问各种方法,简化计算过程,促进精细的数据可视化,并有助于提取重要的生物学见解,以推进科学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eee7/11252408/69d3444599ac/41467_2024_50194_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eee7/11252408/2592f99b6547/41467_2024_50194_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eee7/11252408/7c5579dac80c/41467_2024_50194_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eee7/11252408/518f39804a6a/41467_2024_50194_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eee7/11252408/c785c485aab4/41467_2024_50194_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eee7/11252408/757a25ea24b3/41467_2024_50194_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eee7/11252408/69d3444599ac/41467_2024_50194_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eee7/11252408/2592f99b6547/41467_2024_50194_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eee7/11252408/7c5579dac80c/41467_2024_50194_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eee7/11252408/518f39804a6a/41467_2024_50194_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eee7/11252408/c785c485aab4/41467_2024_50194_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eee7/11252408/757a25ea24b3/41467_2024_50194_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eee7/11252408/69d3444599ac/41467_2024_50194_Fig6_HTML.jpg

相似文献

[1]
OmicVerse: a framework for bridging and deepening insights across bulk and single-cell sequencing.

Nat Commun. 2024-7-16

[2]
Computational Analysis of Single-Cell RNA-Seq Data.

Methods Mol Biol. 2021

[3]
NNICE: a deep quantile neural network algorithm for expression deconvolution.

Sci Rep. 2024-6-18

[4]
Using RNentropy to Detect Significant Variation in Gene Expression Across Multiple RNA-Seq or Single-Cell RNA-Seq Samples.

Methods Mol Biol. 2021

[5]
scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering.

Int J Mol Sci. 2024-5-29

[6]
An analytical framework for interpretable and generalizable single-cell data analysis.

Nat Methods. 2021-11

[7]
Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data.

BMC Genomics. 2024-9-18

[8]
Normalization of Single-Cell RNA-Seq Data.

Methods Mol Biol. 2021

[9]
TSEE: an elastic embedding method to visualize the dynamic gene expression patterns of time series single-cell RNA sequencing data.

BMC Genomics. 2019-4-4

[10]
The promise of single-cell RNA sequencing for kidney disease investigation.

Kidney Int. 2017-10-12

引用本文的文献

[1]
Multi-organ AI Endophenotypes Chart the Heterogeneity of Pan-disease in the Brain, Eye, and Heart.

medRxiv. 2025-8-13

[2]
Novel Lysosomal-Associated Transmembrane Protein 4B-Positive Stem-Like Cell Subpopulation Characterizes High-Risk Colorectal Cancer Subtypes.

MedComm (2020). 2025-7-13

[3]
DOLPHIN advances single-cell transcriptomics beyond gene level by leveraging exon and junction reads.

Nat Commun. 2025-7-4

[4]
Benchmarking metabolic RNA labeling techniques for high-throughput single-cell RNA sequencing.

Nat Commun. 2025-7-1

[5]
Single nucleus RNA-seq reveals the process from onset to chronic kidney disease in IgA nephropathy.

Sci Rep. 2025-7-2

[6]
Differential expression analysis with inmoose, the integrated multi-omic open-source environment in Python.

BMC Bioinformatics. 2025-6-23

[7]
scATD: a high-throughput and interpretable framework for single-cell cancer drug resistance prediction and biomarker identification.

Brief Bioinform. 2025-5-1

[8]
Bridging the gap between R and Python in bulk transcriptomic data analysis with InMoose.

Sci Rep. 2025-5-24

[9]
Spatially segregated APOE macrophages restrict immunotherapy efficacy in clear cell renal cell carcinoma.

Theranostics. 2025-4-13

[10]
Development of a breast cancer invasion score to predict tumor aggressiveness and prognosis via PI3K/AKT/mTOR pathway analysis.

Cell Death Discov. 2025-4-9

本文引用的文献

[1]
pyComBat, a Python tool for batch effects correction in high-throughput molecular data using empirical Bayes methods.

BMC Bioinformatics. 2023-12-7

[2]
CSF1R inhibition with PLX5622 affects multiple immune cell compartments and induces tissue-specific metabolic effects in lean mice.

Diabetologia. 2023-12

[3]
PyDESeq2: a python package for bulk RNA-seq differential expression analysis.

Bioinformatics. 2023-9-2

[4]
scDesign3 generates realistic in silico data for multimodal single-cell and spatial omics.

Nat Biotechnol. 2024-2

[5]
Comparison of transformations for single-cell RNA-seq data.

Nat Methods. 2023-5

[6]
The scverse project provides a computational ecosystem for single-cell omics data analysis.

Nat Biotechnol. 2023-5

[7]
SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data.

Nat Biotechnol. 2023-12

[8]
Single-cell RNA sequencing to identify cellular heterogeneity and targets in cardiovascular diseases: from bench to bedside.

Basic Res Cardiol. 2023-2-7

[9]
scDrug: From single-cell RNA-seq to drug response prediction.

Comput Struct Biotechnol J. 2022-12-1

[10]
GSEApy: a comprehensive package for performing gene set enrichment analysis in Python.

Bioinformatics. 2023-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索