Luo Yan, Zhang Chenyang, Fulco Sage, Liu Jingyi, Chen Keyu, Hu Yuntao, Jiang Yuchen, Xu Rui, Rakesh Leela, Fusun Ozer, Tertuliano Ottman, Turner Kevin, Vining Kyle H
Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States.
Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States.
bioRxiv. 2025 Jun 2:2025.05.30.656989. doi: 10.1101/2025.05.30.656989.
This study developed a biocompatible multifunctional thiol-ene resin system for adhesion to dentin mineralized tissue. Adhesive resins maintain the strength and longevity of dental composite restorations through chemophysical bonding to exposed dentin surfaces after cavity preparations. Dental pulp cells are exposed to residual monomers transported through dentinal tubules. Monomers of conventional adhesive systems may result in inhomogeneous polymer networks and the release of residual monomers that cause cytotoxicity. In this study, we develop a one-step multi-functional polymeric resin system by incorporating trimethylolpropane triacrylate (TMPTA) and bis[2-(methacryloyloxy)ethyl] phosphate (BMEP) to enhance both mechanical properties and adhesion to dentin. Molecular dynamics simulations identified an optimal triacylate:trithiol ratio of 2.5:1, which was consistent with rheological and mechanical tests that yielded a storage modulus of ~30 MPa with or without BMEP. Shear bond tests demonstrated that the addition of BMEP significantly improved dentin adhesion, achieving a shear bond strength of 10.8 MPa, comparable to the commercial primer Clearfil SE Bond. Nanoindentation modulus mapping characterized the hybrid layer and mechanical gradient of the adhesive resin system. Further, the triacrylate-BMEP resin showed biocompatibility with fibroblasts in vitro. These findings suggest the triacrylate-trithiol crosslinking and chemophysical bonding of BMEP provide enhanced bond strength and biocompatibility for dental applications.
本研究开发了一种用于与牙本质矿化组织黏附的生物相容性多功能硫醇-烯树脂体系。黏结树脂通过在窝洞制备后与暴露的牙本质表面进行化学物理结合,来维持牙科复合修复体的强度和使用寿命。牙髓细胞会接触到通过牙本质小管转运的残留单体。传统黏结体系的单体可能会导致聚合物网络不均匀,并释放出具有细胞毒性的残留单体。在本研究中,我们通过加入三羟甲基丙烷三丙烯酸酯(TMPTA)和双[2-(甲基丙烯酰氧基)乙基]磷酸酯(BMEP)来开发一种一步法多功能聚合物树脂体系,以增强机械性能和对牙本质的黏附力。分子动力学模拟确定了三酰基酯与三硫醇的最佳比例为2.5:1,这与流变学和力学测试结果一致,无论有无BMEP,其储能模量均约为30 MPa。剪切黏结测试表明,添加BMEP可显著提高对牙本质的黏附力,实现了10.8 MPa的剪切黏结强度,与商业底漆Clearfil SE Bond相当。纳米压痕模量映射表征了黏结树脂体系的混合层和力学梯度。此外,三丙烯酸酯-BMEP树脂在体外显示出与成纤维细胞的生物相容性。这些发现表明,三丙烯酸酯-三硫醇交联和BMEP的化学物理结合为牙科应用提供了增强的黏结强度和生物相容性。