Muratspahić Edin, Feldman David, Kim David E, Qu Xiangli, Bratovianu Ana-Maria, Rivera-Sánchez Paula, Dimitri Federica, Cao Jason, Cary Brian P, Belousoff Matthew J, Keov Peter, Chen Qingchao, Ren Yue, Fine Justyn, Sappington Isaac, Schlichthaerle Thomas, Zhang Jason Z, Pillai Arvind, Mihaljević Ljubica, Bauer Magnus, Torres Susana Vázquez, Motmaen Amir, Lee Gyu Rie, Tran Long, Wang Xinru, Goreshnik Inna, Vafeados Dionne K, Svendsen Justin E, Hosseinzadeh Parisa, Lindegaard Nicolai, Brandt Matthäus, Waltenspühl Yann, Deibler Kristine, Oostdyk Luke, Cao William, Anantharaman Lakshmi, Stewart Lance, Halloran Lauren, Spangler Jamie B, Sexton Patrick M, Roth Bryan L, Krumm Brian E, Wootten Denise, Tate Christopher G, Norn Christoffer, Baker David
Department of Biochemistry, University of Washington, Seattle, WA 98195.
Institute for Protein Design, University of Washington, Seattle, WA 98195.
bioRxiv. 2025 Jun 5:2025.03.23.644666. doi: 10.1101/2025.03.23.644666.
G protein-coupled receptors (GPCRs) play key roles in physiology and are central targets for drug discovery and development, yet the design of protein agonists and antagonists has been challenging as GPCRs are integral membrane proteins and conformationally dynamic. Here we describe computational design methods and a high throughput "receptor diversion" microscopy-based screen for generating GPCR binding miniproteins with high affinity, potency and selectivity, and the use of these methods to generate MRGPRX1 agonists and CXCR4, GLP1R, GIPR, GCGR and CGRPR antagonists. Cryo-electron microscopy data reveals atomic-level agreement between designed and experimentally determined structures for CGRPR-bound antagonists and MRGPRX1-bound agonists, confirming precise conformational control of receptor function. Our design and screening approach opens new frontiers in GPCR drug discovery and development.
G蛋白偶联受体(GPCRs)在生理学中发挥关键作用,是药物发现和开发的核心靶点。然而,由于GPCRs是整合膜蛋白且构象动态变化,蛋白质激动剂和拮抗剂的设计一直具有挑战性。在此,我们描述了计算设计方法以及基于高通量“受体转向”显微镜的筛选方法,用于生成具有高亲和力、效力和选择性的GPCR结合小蛋白,并利用这些方法生成MRGPRX1激动剂以及CXCR4、GLP1R、GIPR、GCGR和CGRPR拮抗剂。冷冻电子显微镜数据揭示了与CGRPR结合的拮抗剂和与MRGPRX1结合的激动剂在设计结构和实验确定结构之间的原子水平一致性,证实了对受体功能的精确构象控制。我们的设计和筛选方法为GPCR药物发现和开发开辟了新的前沿领域。