Suppr超能文献

深度可变反卷积应用于宽场显微镜以实现快速大体积组织成像

Depth-Variant Deconvolution Applied to Widefield Microscopy for Rapid Large-Volume Tissue Imaging.

作者信息

Lee Daniel D, Telfer Kevin A, Koenis Mark A J, Lee Yim K, Namink Kevin W, Saunders Brian T, Lee Heyun, Kelley Hailey K, Ruiz Heather S, Gaut Joseph P, Randolph Gwendalyn J, Zinselmeyer Bernd H

机构信息

Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO, USA.

Scientific Volume Imaging B.V., Hilversum, Netherlands.

出版信息

Res Sq. 2025 Jun 6:rs.3.rs-6710731. doi: 10.21203/rs.3.rs-6710731/v1.

Abstract

Innovations in 3D tissue imaging have revolutionized research, but limitations stemming from lengthy protocols and equipment accessibility persist. Classical widefield microscopy is fast and accessible but often excluded from 3D imaging workflows due to its lack of optical sectioning. Here we combine tissue clearing with a depth-variant deconvolution approach customized for large-volume widefield imaging to achieve subnuclear axial resolution in tissues to a depth of 500 μm. We illustrate the utility of this method in a mouse model of ileitis and to gain a 3D perspective in thick brain slices from a mouse model of cerebral amyloid angiopathy, where we resolved large and small blood vessels, including those with amyloid deposits, attaining resolution that compared favorably to tile-scanning confocal microscopy. Finally, we sought to leverage our approach to allow for richer pathological evaluation of human kidney biopsies. Our approach produced hundreds of consecutive z-planes in five minutes of imaging for 3D visualization of winding arterioles feeding into glomeruli. This 3D perspective afforded straightforward identification of atrophic tubes in fresh kidney biopsies prepared in 2 hours to simulate the time-constrained evaluation of donor kidneys for transplant suitability. Having achieved subnuclear z-resolution in sections hundreds of microns thick, widefield microscopy coupled to robust deconvolution now emerges as an accessible and viable method to gain 3D insight in research or clinical pathological evaluations.

摘要

3D组织成像技术的创新彻底改变了研究方式,但由于协议冗长和设备可及性问题导致的局限性依然存在。传统的宽场显微镜速度快且易于使用,但由于缺乏光学切片功能,通常被排除在3D成像工作流程之外。在这里,我们将组织透明化与为大体积宽场成像定制的深度可变反卷积方法相结合,以在深度达500μm的组织中实现亚核轴向分辨率。我们展示了该方法在回肠炎小鼠模型中的效用,并在脑淀粉样血管病小鼠模型的厚脑切片中获得了3D视角,在其中我们分辨出了大小血管,包括那些有淀粉样沉积物的血管,其分辨率与平铺扫描共聚焦显微镜相当。最后,我们试图利用我们的方法对人类肾活检进行更丰富的病理评估。我们的方法在五分钟的成像中产生了数百个连续的z平面,用于对汇入肾小球的蜿蜒小动脉进行3D可视化。这种3D视角能够直接识别在两小时内制备的新鲜肾活检中的萎缩肾小管,以模拟对供体肾脏进行移植适用性的时间受限评估。在数百微米厚的切片中实现了亚核z分辨率后,结合强大反卷积的宽场显微镜现在成为了一种在研究或临床病理评估中获得3D洞察的可及且可行的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de20/12155202/fd2625b31994/nihpp-rs6710731v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验