Zheng Xiaomei, Cairns Timothy C, Ni Xiaomei, Zhang Lihui, Zhai Huanhuan, Meyer Vera, Zheng Ping, Sun Jibin
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.
Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
Microb Biotechnol. 2022 Jun;15(6):1867-1882. doi: 10.1111/1751-7915.14020. Epub 2022 Feb 25.
Aspergillus niger, an important industrial workhorse for citric acid production, is characterized by polar hyphal growth with complex pelleted, clumped or dispersed macromorphologies in submerged culture. Although organic acid titres are dramatically impacted by these growth types, studies that assess productivity and macromorphological changes are limited. Herein, we functionally analysed the role of the protein kinase A (PKA)/cyclic adenosine monophosphate (cAMP) signalling cascade during fermentation by disrupting and conditionally expressing the pkaC gene. pkaC played multiple roles during hyphal, colony and conidiophore growth. By overexpressing pkaC, we could concomitantly modify hyphal growth at the pellet surface and improve citric acid titres up to 1.87-fold. By quantitatively analysing hundreds of pellets during pilot fermentation experiments, we provide the first comprehensive correlation between A. niger pellet surface morphology and citric acid production. Finally, by intracellular metabolomics analysis and weighted gene coexpression network analysis (WGCNA) following titration of pkaC expression, we unveil the metabolomic and transcriptomic basis underpin hyperproductivity and pellet growth. Taken together, this study confirms pkaC as hub regulator linking submerged macromorphology and citric acid production and provides high-priority genetic leads for future strain engineering programmes.
黑曲霉是柠檬酸生产的重要工业菌株,其特征在于在深层培养中具有极性菌丝生长,并伴有复杂的颗粒状、团块状或分散状的宏观形态。尽管这些生长类型会显著影响有机酸产量,但评估生产力和宏观形态变化的研究却很有限。在此,我们通过破坏和条件性表达pkaC基因,对蛋白激酶A(PKA)/环磷酸腺苷(cAMP)信号级联在发酵过程中的作用进行了功能分析。pkaC在菌丝、菌落和分生孢子梗生长过程中发挥多种作用。通过过表达pkaC,我们可以同时改变颗粒表面的菌丝生长,并将柠檬酸产量提高至1.87倍。通过在中试发酵实验中对数百个颗粒进行定量分析,我们首次全面阐述了黑曲霉颗粒表面形态与柠檬酸生产之间的相关性。最后,通过对pkaC表达进行滴定后的细胞内代谢组学分析和加权基因共表达网络分析(WGCNA),我们揭示了高产和颗粒生长的代谢组学和转录组学基础。综上所述,本研究证实pkaC是连接深层宏观形态和柠檬酸生产的核心调节因子,并为未来的菌株工程计划提供了高度优先的遗传线索。