Nagasawa Takumi, Sakamaki Koji, Yoshida Akihiro, Machida Hiroki, Murakami Fumitaka, Hashimoto Mari, Shinohara Takahito, Murakami Masami, Tsunekawa Katsuhiko, Kimura Takao
Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Showa-Machi 3-39-22, Maebashi 371-8511, Gunma, Japan.
Clinical Laboratory Center, Gunma University Hospital, Showa-Machi 3-39-22, Maebashi 371-8511, Gunma, Japan.
Nutrients. 2025 May 30;17(11):1880. doi: 10.3390/nu17111880.
This study aimed to identify the regulatory system of lipoprotein lipase (LPL), glycosylphosphatidylinositol-anchored high-density lipoprotein (HDL)-binding protein 1 (GPIHBP1), and hepatic triglyceride lipase (HTGL) in the peripheral bloodstream. : In total, 207 individuals (100 males and 107 females) who were diagnosed with normal glucose tolerance or prediabetes during their comprehensive health checkup were investigated. : Circulating LPL levels were positively correlated with the GPIHBP1 and HDL-cholesterol (HDL-C) levels, and negatively correlated with body mass index (BMI), waist circumference (WC), Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) scores, triglyceride-glucose index, and triglyceride, fasting insulin, ferritin, and C-reactive protein (CRP) levels. The GPIHBP1 level was positively correlated with LPL and HTGL levels, and negatively correlated with estimated glomerular filtration rate (eGFR). The HTGL level was positively correlated with BMI, WC, HOMA-IR score, and GPIHBP1, low-density lipoprotein cholesterol (LDL-C), fasting insulin, and ferritin levels. Meanwhile, it was negatively correlated with HDL-C levels. The multiple regression analysis revealed that the circulating LPL level was independently affected by BMI, red blood cell (RBC) count, GPIHBP1, fasting plasma glucose (FPG), fasting insulin, HDL-C, CRP, and ferritin levels. The GPIHBP1 level was independently affected by age, eGFR, FPG, LPL, and HTGL levels and RBC count. The HTGL level was independently affected by WC, GPIHBP1 and LDL-C levels. : LPL and HTGL levels reflect insulin resistance. In particular, individuals with a greater insulin resistance present with a lower LPL level and a higher HTGL level. An increased GPIHBP1 level might compensate for decreased LPL levels due to insulin resistance.
本研究旨在确定外周血中脂蛋白脂肪酶(LPL)、糖基磷脂酰肌醇锚定高密度脂蛋白(HDL)结合蛋白1(GPIHBP1)和肝甘油三酯脂肪酶(HTGL)的调节系统。总共对207名在全面健康检查中被诊断为糖耐量正常或糖尿病前期的个体(100名男性和107名女性)进行了调查。循环LPL水平与GPIHBP1和HDL胆固醇(HDL-C)水平呈正相关,与体重指数(BMI)、腰围(WC)、胰岛素抵抗稳态模型评估(HOMA-IR)评分、甘油三酯-葡萄糖指数以及甘油三酯、空腹胰岛素、铁蛋白和C反应蛋白(CRP)水平呈负相关。GPIHBP1水平与LPL和HTGL水平呈正相关,与估计肾小球滤过率(eGFR)呈负相关。HTGL水平与BMI、WC、HOMA-IR评分以及GPIHBP1、低密度脂蛋白胆固醇(LDL-C)、空腹胰岛素和铁蛋白水平呈正相关。同时,它与HDL-C水平呈负相关。多元回归分析显示,循环LPL水平独立受BMI、红细胞(RBC)计数、GPIHBP1、空腹血糖(FPG)、空腹胰岛素、HDL-C、CRP和铁蛋白水平影响。GPIHBP1水平独立受年龄、eGFR、FPG、LPL和HTGL水平以及RBC计数影响。HTGL水平独立受WC、GPIHBP1和LDL-C水平影响。LPL和HTGL水平反映胰岛素抵抗。特别是,胰岛素抵抗较强的个体LPL水平较低而HTGL水平较高。GPIHBP1水平升高可能会补偿因胰岛素抵抗导致的LPL水平降低。