Li Haonan, Zhao Jiahuan, He Chenguang, Guan Yang, Guan Huimin, He Ting, Meng Dexu, Wang Xiaoping, Tang Yimiao
Key Laboratory of Molecular Cell Genetics and Genetic Breeding in Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
Heilongjiang Provincial Laboratory of Plant Physiology, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
Plants (Basel). 2025 May 23;14(11):1588. doi: 10.3390/plants14111588.
Rye (), a cereal crop with high cold tolerance, serves as an ideal model for investigating plant cold adaptation mechanisms. Despite recent progress in identifying numerous genes and metabolic changes associated with cold tolerance, the detailed regulatory networks and coordinated interactions between metabolic pathways under low-temperature stress in rye remain unclear. In this study, we focused on the winter rye variety "Winter" and systematically explored its metabolic regulatory responses to cold stress through a combination of low-temperature treatments, phenotypic observations, antioxidant enzyme activity assays, and transcriptomic analysis. Four rye varieties ("Winter", HZHM3, HZHM8, and "Victory") were compared for cold tolerance, with the results indicating that "Winter" and HZHM3 exhibit superior cold tolerance. Physiological analysis revealed that after 12 h of exposure to -4 °C, the activities of catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) in "Winter" were significantly upregulated, displaying an initial increase followed by a decline over time. Transcriptomic sequencing identified 1643 differentially expressed genes (DEGs), and GO, KEGG, and GSEA enrichment analyses highlighted the critical roles of carbohydrate metabolism (ko00630) and amino acid metabolism (ko00250) pathways in the cold stress response. These pathways are interconnected through key metabolic intermediates such as L-glutamate, collectively regulating cold adaptation. Furthermore, based on the transcriptomic data, we identified and developed molecular markers associated with cold tolerance, detecting 10,846 EST-SSR and 250,116 EST-SNP markers. We successfully developed 13 EST-SSR primer pairs applicable to rye and 7 KASP markers. Notably, the KASP-665 marker effectively distinguishes between winter and spring rye, providing a reliable tool for marker-assisted selection in cold tolerance breeding. This study not only elucidates the metabolic regulatory mechanisms of rye under low-temperature stress but also provides a solid theoretical and technical foundation for future cold-tolerance breeding programs.
黑麦是一种耐寒性强的谷类作物,是研究植物冷适应机制的理想模式植物。尽管最近在鉴定与耐寒性相关的众多基因和代谢变化方面取得了进展,但黑麦在低温胁迫下代谢途径之间详细的调控网络和协同相互作用仍不清楚。在本研究中,我们聚焦于冬黑麦品种“Winter”,通过低温处理、表型观察、抗氧化酶活性测定和转录组分析相结合的方法,系统地探究了其对冷胁迫的代谢调控反应。比较了四个黑麦品种(“Winter”、HZHM3、HZHM8和“Victory”)的耐寒性,结果表明“Winter”和HZHM3表现出较强的耐寒性。生理分析表明,在-4℃处理12小时后,“Winter”中过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)的活性显著上调,呈现出先升高后随时间下降的趋势。转录组测序鉴定出1643个差异表达基因(DEGs),GO、KEGG和GSEA富集分析突出了碳水化合物代谢(ko00630)和氨基酸代谢(ko00250)途径在冷胁迫响应中的关键作用。这些途径通过L-谷氨酸等关键代谢中间体相互连接,共同调节冷适应。此外,基于转录组数据,我们鉴定并开发了与耐寒性相关的分子标记,检测到10846个EST-SSR和250116个EST-SNP标记。我们成功开发了13对适用于黑麦的EST-SSR引物对和7个KASP标记。值得注意的是,KASP-665标记能有效区分冬黑麦和春黑麦,为耐寒性育种中的标记辅助选择提供了可靠工具。本研究不仅阐明了黑麦在低温胁迫下的代谢调控机制,也为未来的耐寒性育种计划提供了坚实的理论和技术基础。