Suppr超能文献

光合驱动优势对盐胁迫下藜麦水分利用增强及根系功能对生物量积累的补偿调节

Water Use Enhancement and Root Function Compensatory Regulation of Biomass Accumulation in Quinoa Under Salt Stress by Photosynthetic Drive Advantage.

作者信息

Xu Hao, Feng Lingzheng, Hao Jia, Zhang Yongkun, Li Runjie

机构信息

School of Civil and Hydraulic Engineering, Qinghai University, Xining 810016, China.

Land Remediation and Ecological Restoration Center, Department of Natural Resources of Qinghai Province, Xining 810001, China.

出版信息

Plants (Basel). 2025 May 25;14(11):1615. doi: 10.3390/plants14111615.

Abstract

Water and salt stress significantly impact the accumulation of crop biomass (TB); however, the relative contributions of photosynthetic, physiological, and morphological factors remain poorly understood. This study aims to comprehensively investigate the effects of water and salt stress on crop growth physiology and identify the primary factors influencing biomass accumulation. We examined four quinoa varieties () under four salinity levels (s0: 0 mmol/L, s1: 100 mmol/L, s2: 200 mmol/L, and s3: 300 mmol/L) and two moisture levels (w1: 30% field capacity (FC), w2: 80% FC). Using principal component analysis (PCA) and correlation analysis, we constructed a random forest model (RF) and a partial least-squares path modeling (PLS-PM) framework to elucidate the effects of water and salt stress on quinoa growth physiology and clarify the adaptive mechanisms of quinoa under varying salinity conditions. The results indicate that (1) salinity has a more substantial regulatory effect on the accumulation of proline (Pro) and sodium ions (Na) than water availability. Under conditions of adequate moisture (w2), the activity of antioxidant enzymes increased in response to mild salinity stress (s1). However, with escalating salinity levels, a significant decrease in enzyme activity was observed ( < 0.05). (2) PCA identified salinity as a key factor significantly influencing physiological changes in quinoa growth. The RF model indicated that, under severe salinity conditions (s3), intrinsic water-use efficiency (iWUE) emerged as a critical driver affecting biomass (TB) accumulation. (3) The PLS-PM model quantified the relative contribution rates of various factors to total biomass (TB). It revealed that, as salinity increased, the path coefficients of photosynthetic factors also rose, but their relative contribution diminished due to a corresponding reduction in the contribution of morphological factors. These findings offer a theoretical foundation and decision-making support for the integrated management of water-salt conditions in saline-alkali agricultural fields, as well as for the cultivation of salt-tolerant crops.

摘要

水分和盐分胁迫对作物生物量(TB)的积累有显著影响;然而,光合、生理和形态学因素的相对贡献仍知之甚少。本研究旨在全面调查水分和盐分胁迫对作物生长生理的影响,并确定影响生物量积累的主要因素。我们在四个盐度水平(s0:0 mmol/L,s1:100 mmol/L,s2:200 mmol/L,s3:300 mmol/L)和两个水分水平(w1:30% 田间持水量(FC),w2:80% FC)下研究了四个藜麦品种()。通过主成分分析(PCA)和相关性分析,我们构建了随机森林模型(RF)和偏最小二乘路径模型(PLS-PM)框架,以阐明水分和盐分胁迫对藜麦生长生理的影响,并阐明藜麦在不同盐度条件下的适应机制。结果表明:(1)盐度对脯氨酸(Pro)和钠离子(Na)积累的调节作用比水分有效性更为显著。在水分充足(w2)的条件下,抗氧化酶活性在轻度盐度胁迫(s1)下有所增加。然而,随着盐度水平的升高,酶活性显著下降(<0.05)。(2)PCA确定盐度是显著影响藜麦生长生理变化的关键因素。RF模型表明,在重度盐度条件(s3)下,内在水分利用效率(iWUE)成为影响生物量(TB)积累的关键驱动因素。(3)PLS-PM模型量化了各种因素对总生物量(TB)的相对贡献率。结果表明,随着盐度的增加,光合因素的路径系数也上升,但其相对贡献因形态学因素贡献的相应减少而降低。这些发现为盐碱农田水盐条件的综合管理以及耐盐作物的种植提供了理论基础和决策支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d68c/12157193/e507f805d05d/plants-14-01615-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验