Liñán-González Alejandra E, Rodríguez-Montelongo Sayma A, García-Soto Mariano J, Gómez-Zarandona Daniela, Farfán-Castro Susan, Palestino Gabriela, Ocampo-Pérez Raúl, Padilla-Ortega Erika, González-Ortega Omar, Rosales-Mendoza Sergio
Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, San Luis Potosí 78210, Mexico.
Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a Sección, San Luis Potosí 78210, Mexico.
Materials (Basel). 2025 May 23;18(11):2449. doi: 10.3390/ma18112449.
Nanoclays have gained attention in biological applications due to their biocompatibility, low toxicity, and cost-effectiveness. Layered double hydroxides (LDHs) are synthetic nanoclays that have been used as adjuvants and antigen carriers in nanovaccines developed through passive bioconjugation. However, performing active bioconjugation to bind antigens covalently and generate subunit nanovaccines remains unexplored. In this study, we investigated the synthesis, functionalization, and active conjugation of LDH nanoparticles to produce subunit nanovaccines with peptides from SARS-CoV-2. The synthesis of Mg-Al LDHs via a coprecipitation and hydrothermal treatment rendered monodisperse particles averaging 100 nm. Their functionalization with (3-aminopropyl)triethoxysilane was better than it was with other organosilanes. Glutaraldehyde was used as a linker to bind lysine as a model biomolecule to establish the best conditions for reductive amination. Finally, two peptides, P and P (epitopes of the SARS-CoV-2 spike protein), were bound on the surface of the LDH to produce two subunit vaccine candidates, reaching peptide concentrations of 125 and 270 µg/mL, respectively. The particles were characterized using DLS, TEM, XRD, TGA, DSC, and FTIR. The cytotoxicity studies revealed that the conjugate with P was non-toxic up to 250 µg/mL, while the immunogenicity studies showed that this conjugate induced similar IgG titers to those reached when aluminum hydroxide was used as an adjuvant.
由于其生物相容性、低毒性和成本效益,纳米粘土在生物应用中受到了关注。层状双氢氧化物(LDHs)是合成纳米粘土,已被用作通过被动生物共轭开发的纳米疫苗中的佐剂和抗原载体。然而,进行主动生物共轭以共价结合抗原并生成亚单位纳米疫苗仍未得到探索。在本研究中,我们研究了LDH纳米颗粒的合成、功能化和主动共轭,以生产含有来自SARS-CoV-2的肽的亚单位纳米疫苗。通过共沉淀和水热处理合成的Mg-Al LDHs产生了平均粒径为100 nm的单分散颗粒。用(3-氨丙基)三乙氧基硅烷对其进行功能化比用其他有机硅烷效果更好。戊二醛用作连接剂,将赖氨酸作为模型生物分子结合,以确定还原胺化的最佳条件。最后,两种肽,P和P(SARS-CoV-2刺突蛋白的表位),结合在LDH表面,产生两种亚单位疫苗候选物,肽浓度分别达到125和270 µg/mL。使用动态光散射(DLS)、透射电子显微镜(TEM)、X射线衍射(XRD)、热重分析(TGA)、差示扫描量热法(DSC)和傅里叶变换红外光谱(FTIR)对颗粒进行了表征。细胞毒性研究表明,与P结合的共轭物在浓度高达250 µg/mL时无毒,而免疫原性研究表明,该共轭物诱导的IgG滴度与使用氢氧化铝作为佐剂时达到的滴度相似。