文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

再生牙髓治疗:利用干细胞、支架和生长因子。

Regenerative Endodontic Therapies: Harnessing Stem Cells, Scaffolds, and Growth Factors.

作者信息

Farjaminejad Rosana, Farjaminejad Samira, Garcia-Godoy Franklin

机构信息

Department of Health Services Research and Management, School of Health and Psychological Sciences, City, University of London, London WC1E 7HU, UK.

Department of Bioscience Research, Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, 875 Union Avenue, Memphis, TN 38163, USA.

出版信息

Polymers (Basel). 2025 May 26;17(11):1475. doi: 10.3390/polym17111475.


DOI:10.3390/polym17111475
PMID:40508718
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12157830/
Abstract

Regenerative Endodontic Therapies (RETs) offer transformative potential by leveraging polymer-based scaffolds, stem cells, and growth factors to regenerate damaged dental pulp tissue, thereby restoring tooth vitality and prolonging tooth function. While conventional treatments focus on infection control, they often compromise the structural and biological integrity of the tooth. RETs, in contrast, aim to restore the natural function of the pulp-dentin complex by promoting cellular regeneration and immune modulation. In this context, biodegradable polymers-such as collagen, gelatin methacryloyl (GelMA), and synthetic alternatives-serve as scaffolding materials that mimic the extracellular matrix, support cell attachment and proliferation, and enable localized delivery of bioactive factors. Together, the tissue engineering triad-polymer-based scaffolds, stem cells, and signaling molecules-facilitates root development, apical closure, and increased fracture resistance. Recent innovations in polymeric scaffold design, including injectable hydrogels and 3D bioprinting technologies, have enhanced clinical translation by enabling minimally invasive and patient-specific RETs. Despite progress, challenges such as immune compatibility, scaffold degradation rates, and the standardization of clinical protocols remain. RETs, thus, represent a paradigm shift in dental care, aligning with the body's intrinsic healing capacity and offering improved long-term outcomes for patients.

摘要

再生牙髓治疗(RETs)通过利用基于聚合物的支架、干细胞和生长因子来再生受损的牙髓组织,从而恢复牙齿活力并延长牙齿功能,具有变革性潜力。传统治疗方法侧重于控制感染,但往往会损害牙齿的结构和生物完整性。相比之下,RETs旨在通过促进细胞再生和免疫调节来恢复牙髓-牙本质复合体的自然功能。在这种情况下,可生物降解的聚合物,如胶原蛋白、甲基丙烯酰化明胶(GelMA)和合成替代品,作为模仿细胞外基质的支架材料,支持细胞附着和增殖,并能够局部递送生物活性因子。基于聚合物的支架、干细胞和信号分子这一组织工程三元组共同促进牙根发育、根尖闭合并提高抗折性。聚合物支架设计的最新创新,包括可注射水凝胶和3D生物打印技术,通过实现微创和个性化的RETs增强了临床转化。尽管取得了进展,但免疫相容性、支架降解率和临床方案标准化等挑战仍然存在。因此,RETs代表了牙科护理的范式转变,与身体的内在愈合能力相一致,并为患者提供了更好的长期治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536a/12157830/a9dd1426eaa0/polymers-17-01475-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536a/12157830/5d8813eb66e9/polymers-17-01475-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536a/12157830/88d5806989d3/polymers-17-01475-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536a/12157830/cd4d1355772c/polymers-17-01475-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536a/12157830/766d6535f0fa/polymers-17-01475-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536a/12157830/1d3fb9ca75c5/polymers-17-01475-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536a/12157830/5869c2a41705/polymers-17-01475-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536a/12157830/a9dd1426eaa0/polymers-17-01475-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536a/12157830/5d8813eb66e9/polymers-17-01475-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536a/12157830/88d5806989d3/polymers-17-01475-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536a/12157830/cd4d1355772c/polymers-17-01475-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536a/12157830/766d6535f0fa/polymers-17-01475-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536a/12157830/1d3fb9ca75c5/polymers-17-01475-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536a/12157830/5869c2a41705/polymers-17-01475-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536a/12157830/a9dd1426eaa0/polymers-17-01475-g007.jpg

相似文献

[1]
Regenerative Endodontic Therapies: Harnessing Stem Cells, Scaffolds, and Growth Factors.

Polymers (Basel). 2025-5-26

[2]
Hydrogels and Dentin-Pulp Complex Regeneration: From the Benchtop to Clinical Translation.

Polymers (Basel). 2020-12-9

[3]
Bovine pulp extracellular matrix hydrogel for regenerative endodontic applications: in vitro characterization and in vivo analysis in a necrotic tooth model.

Head Face Med. 2024-10-22

[4]
Polymer-Based Scaffolds as an Implantable Material in Regenerative Dentistry: A Review.

J Funct Biomater. 2025-2-24

[5]
Present and future of tissue engineering scaffolds for dentin-pulp complex regeneration.

J Tissue Eng Regen Med. 2018-12-17

[6]
GelMA/TCP nanocomposite scaffold for vital pulp therapy.

Acta Biomater. 2024-1-1

[7]
GelMA-based hydrogel biomaterial scaffold: A versatile platform for regenerative endodontics.

J Biomed Mater Res B Appl Biomater. 2024-5

[8]
Recent Advances in Regenerative Endodontics: A Review of Current Techniques and Future Directions.

Cureus. 2024-11-20

[9]
Carbon Dot-Based Photo-Cross-Linked Gelatin Methacryloyl Hydrogel Enables Dental Pulp Regeneration: A Preliminary Study.

ACS Appl Mater Interfaces. 2024-4-24

[10]
Biomimetic microenvironments for regenerative endodontics.

Biomater Res. 2016-6-2

引用本文的文献

[1]
Optimizing methods for regenerative endodontics.

Regen Med. 2025-8

本文引用的文献

[1]
Regenerative Strategies in Dentistry: Harnessing Stem Cells, Biomaterials and Bioactive Materials for Tissue Repair.

Biomolecules. 2025-4-8

[2]
Advances and Challenges in Polymer-Based Scaffolds for Bone Tissue Engineering: A Path Towards Personalized Regenerative Medicine.

Polymers (Basel). 2024-11-26

[3]
Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering.

J Funct Biomater. 2024-8-23

[4]
Antimicrobial Silk Fibroin Methacrylated Scaffolds for Regenerative Endodontics.

J Endod. 2024-12

[5]
Comparison of selective laser melting and stereolithography etching templates for guided endodontics.

PeerJ. 2024

[6]
Chitosan-Gelatin Scaffolds Loaded with Different Antibiotic Formulations for Regenerative Endodontic Procedures Promote Biocompatibility and Antibacterial Activity.

J Funct Biomater. 2024-7-4

[7]
Regenerative endodontic therapy: From laboratory bench to clinical practice.

J Adv Res. 2025-6

[8]
Dentin Mechanobiology: Bridging the Gap between Architecture and Function.

Int J Mol Sci. 2024-5-22

[9]
Advancing dentin remineralization: Exploring amorphous calcium phosphate and its stabilizers in biomimetic approaches.

Dent Mater. 2024-8

[10]
Unlocking the Future of Periodontal Regeneration: An Interdisciplinary Approach to Tissue Engineering and Advanced Therapeutics.

Biomedicines. 2024-5-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索