Junio Raí Felipe Pereira, Fontes José Carlos Ferreira, Silva Douglas Santos, de Cêa Bernardo Soares Avila, Monteiro Sergio Neves, Nascimento Lucio Fabio Cassiano
Military Institute of Engineering-IME, Department of Materials Science, Praça General Tibúrcio, 80, Praia Vermelha, Urca, Rio de Janeiro CEP 22290-270, RJ, Brazil.
Department of Civil Engineering, Augusto Motta University Center-UNISUAM, Avenida Paris, 84, Bonsucesso, Rio de Janeiro CEP 21041-020, RJ, Brazil.
Polymers (Basel). 2025 May 28;17(11):1504. doi: 10.3390/polym17111504.
The growing demand for sustainable materials with tunable thermal and structural properties has driven the development of composites reinforced with natural fibers in additive manufacturing (AM) technologies. This study investigates the thermal and chemical behavior of polymer composites produced via Digital Light Processing (DLP), an AM technique based on vat photopolymerization that stands out for its high resolution, dimensional control, and superior speed compared to methods such as FDM and SLA. Samples were manufactured with a UV-curable acrylate resin reinforced with jute fibers () in mass fractions of 0%, 2%, 2.5%, and 3% in solid geometries (CS-). TGA indicated a 4% reduction in the initial degradation temperature with increasing fiber content, from 326.3 °C (CS-0) to 313.2 °C (CS-3.0). TMA revealed a reduction of up to 19% in the coefficients of thermal expansion, indicating greater dimensional stability. The DMA indicated a 16.9% decrease in the storage modulus with 3% fibers, evidencing changes in the viscoelastic response. FTIR detected additional bands at 3340 cm and 1030 cm, related to O-H and polysaccharides, confirming a fiber-matrix chemical interaction. These results demonstrate the potential of jute as a sustainable reinforcement in photopolymerizable resins, paving the way for ecological and functional applications in 3D-printed composites.
对具有可调热性能和结构性能的可持续材料的需求不断增长,推动了在增材制造(AM)技术中使用天然纤维增强复合材料的发展。本研究调查了通过数字光处理(DLP)生产的聚合物复合材料的热行为和化学行为,DLP是一种基于光聚合反应的增材制造技术,与熔融沉积成型(FDM)和立体光刻(SLA)等方法相比,它具有高分辨率、尺寸可控和速度快等优点。使用质量分数分别为0%、2%、2.5%和3%的黄麻纤维增强的紫外光固化丙烯酸酯树脂制造了实心几何形状(CS-)的样品。热重分析(TGA)表明,随着纤维含量的增加,初始降解温度降低了4%,从326.3℃(CS-0)降至313.2℃(CS-3.0)。热机械分析(TMA)显示热膨胀系数降低了19%,表明尺寸稳定性更高。动态热机械分析(DMA)表明,含有3%纤维时储能模量降低了16.9%,证明了粘弹性响应的变化。傅里叶变换红外光谱(FTIR)在3340 cm和1030 cm处检测到与O-H和多糖相关的额外谱带,证实了纤维与基体之间的化学相互作用。这些结果证明了黄麻作为光聚合树脂中可持续增强材料的潜力,为3D打印复合材料的生态和功能应用铺平了道路。