Rahman Md Mahabur, Al Mamun Abdulla, Minami Hideto, Hossain Md Kawsar, Hoque S Manjura, Sharafat Mostafa K, Ahmad Hasan
Research Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry, Rajshahi University Rajshahi 6205 Bangladesh
Department of Chemistry, Pabna University of Science and Technology Pabna 6600 Bangladesh.
RSC Adv. 2025 Jun 12;15(25):19966-19981. doi: 10.1039/d5ra01022e. eCollection 2025 Jun 10.
The fabrication of sustainable electrode materials with high specific capacitance values is essential for designing energy-efficient supercapacitors. With this aim, herein, VO-integrated biochar@poly(aniline-pyrrole), named the BC@CCp@VO hybrid composite, is evaluated as an electrode material. First, biochar (BC) is prepared a simple hydrothermal treatment of sucrose solution. Then, conducting poly(aniline-pyrrole) (CCp) is incorporated a seeded chemical oxidation method to yield BC@CCp composite particles. Finally, the BC@CCp composite is thoroughly blended with calcined VO at a composite to VO (w/w) ratio of 4 : 1. The morphology and surface composition of the BC@CCp@VO hybrid composite are analyzed and confirmed electron microscopy and various spectral analyses. The electrochemical properties of BC@CCp, calcined VO and the BC@CCp@VO-coated graphite electrode are measured and compared. According to galvanostatic charge discharge (GCD) measurements, the BC@CCp@VO-coated electrode shows an exceptionally high capacitance value of 4150.6 F g at a current density of 1.0 A g. The BC@CCp@VO-coated electrode also demonstrates excellent capacitance retention (134%) at 10.0 A g after 1000 charge-discharge cycles. This significant enhancement in the capacitance and stability is achieved owing to the combination of the individual components' properties and the synergistic interplay between calcined VO and the active centers of BC@CCp. These observations represent a significant advancement in the design of sustainable BC@CCp@VO electrode materials for application in energy-efficient supercapacitor devices.
制备具有高比电容值的可持续电极材料对于设计节能超级电容器至关重要。出于这个目的,本文评估了VO集成的生物炭@聚(苯胺-吡咯),即BC@CCp@VO杂化复合材料作为电极材料。首先,通过对蔗糖溶液进行简单的水热处理来制备生物炭(BC)。然后,采用种子化学氧化法引入导电聚(苯胺-吡咯)(CCp),以生成BC@CCp复合颗粒。最后,将BC@CCp复合材料与煅烧后的VO以复合材料与VO(重量/重量)比为4∶1充分混合。通过电子显微镜和各种光谱分析对BC@CCp@VO杂化复合材料的形态和表面组成进行了分析和确认。测量并比较了BC@CCp、煅烧后的VO以及涂覆有BC@CCp@VO的石墨电极的电化学性能。根据恒电流充放电(GCD)测量结果,涂覆有BC@CCp@VO的电极在电流密度为1.0 A g时显示出异常高的电容值4150.6 F g。涂覆有BC@CCp@VO的电极在1000次充放电循环后,在10.0 A g时也表现出优异的电容保持率(134%)。由于各组分特性的结合以及煅烧后的VO与BC@CCp活性中心之间的协同相互作用,实现了电容和稳定性的显著提高。这些观察结果代表了用于节能超级电容器装置的可持续BC@CCp@VO电极材料设计的重大进展。