Reed Benjamen P, Cant David J H, Spencer Steve J, Carmona-Carmona Abraham Jorge, Bushell Adam, Herrera-Gómez Alberto, Kurokawa Akira, Thissen Andreas, Thomas Andrew G, Britton Andrew J, Bernasik Andrzej, Fuchs Anne, Baddorf Arthur P, Bock Bernd, Theilacker Bill, Cheng Bin, Castner David G, Morgan David J, Valley David, Willneff Elizabeth A, Smith Emily F, Nolot Emmanuel, Xie Fangyan, Zorn Gilad, Smith Graham C, Yasufuku Hideyuki, Fenton Jeffery L, Chen Jian, Counsell Jonathan D P, Radnik Jörg, Gaskell Karen J, Artyushkova Kateryna, Yang Li, Zhang Lulu, Eguchi Makiho, Walker Marc, Hajdyła Mariusz, Marzec Mateusz M, Linford Matthew R, Kubota Naoyoshi, Cortazar-Martínez Orlando, Dietrich Paul, Satoh Riki, Schroeder Sven L M, Avval Tahereh G, Nagatomi Takaharu, Fernandez Vincent, Lake Wayne, Azuma Yasushi, Yoshikawa Yusuke, Shard Alexander G
National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom.
CINVESTAV-Unidad Queretaro, Queretaro 76230, Mexico.
J Vac Sci Technol A. 2020 Dec;38(6):063208. doi: 10.1116/6.0000577. Epub 2020 Nov 23.
We report the results of a Versailles Project on Advanced Materials and Standards interlaboratory study on the intensity scale calibration of x-ray photoelectron spectrometers using low-density polyethylene (LDPE) as an alternative material to gold, silver, and copper. An improved set of LDPE reference spectra, corrected for different instrument geometries using a quartz-monochromated Al Kα x-ray source, was developed using data provided by participants in this study. Using these new reference spectra, a transmission function was calculated for each dataset that participants provided. When compared to a similar calibration procedure using the NPL reference spectra for gold, the LDPE intensity calibration method achieves an absolute offset of ∼3.0% and a systematic deviation of ±6.5% on average across all participants. For spectra recorded at high pass energies (≥90 eV), values of absolute offset and systematic deviation are ∼5.8% and ±5.7%, respectively, whereas for spectra collected at lower pass energies (<90 eV), values of absolute offset and systematic deviation are ∼4.9% and ±8.8%, respectively; low pass energy spectra perform worse than the global average, in terms of systematic deviations, due to diminished count rates and signal-to-noise ratio. Differences in absolute offset are attributed to the surface roughness of the LDPE induced by sample preparation. We further assess the usability of LDPE as a secondary reference material and comment on its performance in the presence of issues such as variable dark noise, x-ray warm up times, inaccuracy at low count rates, and underlying spectrometer problems. In response to participant feedback and the results of the study, we provide an updated LDPE intensity calibration protocol to address the issues highlighted in the interlaboratory study. We also comment on the lack of implementation of a consistent and traceable intensity calibration method across the community of x-ray photoelectron spectroscopy (XPS) users and, therefore, propose a route to achieving this with the assistance of instrument manufacturers, metrology laboratories, and experts leading to an international standard for XPS intensity scale calibration.
我们报告了凡尔赛先进材料与标准项目关于使用低密度聚乙烯(LDPE)作为金、银和铜的替代材料对X射线光电子能谱仪强度标度进行校准的实验室间研究结果。利用本研究参与者提供的数据,开发了一组经过改进的LDPE参考光谱,该光谱使用石英单色Al Kα X射线源针对不同仪器几何结构进行了校正。使用这些新的参考光谱,为参与者提供的每个数据集计算了传输函数。与使用NPL金参考光谱的类似校准程序相比,LDPE强度校准方法在所有参与者中平均实现了约3.0%的绝对偏移和±6.5%的系统偏差。对于在高通能(≥90 eV)下记录的光谱,绝对偏移和系统偏差值分别约为5.8%和±5.7%,而对于在较低通能(<90 eV)下收集的光谱,绝对偏移和系统偏差值分别约为4.9%和±8.8%;由于计数率和信噪比降低,低通能光谱在系统偏差方面的表现比总体平均值更差。绝对偏移的差异归因于样品制备引起的LDPE表面粗糙度。我们进一步评估了LDPE作为二级参考材料的可用性,并对其在存在可变暗噪声、X射线预热时间、低计数率下的不准确性以及潜在光谱仪问题等情况下的性能进行了评论。针对参与者的反馈和研究结果,我们提供了更新的LDPE强度校准协议,以解决实验室间研究中突出的问题。我们还评论了X射线光电子能谱(XPS)用户群体中缺乏一致且可追溯的强度校准方法的实施情况,因此,提出了一条在仪器制造商、计量实验室和专家的协助下实现这一目标的途径,从而形成XPS强度标度校准的国际标准。