Yang Jie, Li Ping-Ting, Xi Sheng-Ying
Department of Pharmacy, Changning Maternity and Infant Health Hospital, East China Normal University, No.786 Yuyuan Road, Changning District, Shanghai, 200051, China.
Department of Pharmacy, Shanghai Geriatric Medical Center, Shanghai, 201104, China.
Discov Oncol. 2025 Jun 13;16(1):1088. doi: 10.1007/s12672-025-02887-4.
Endometriosis and breast cancer are significant global health burdens affecting women worldwide. Both conditions share notable characteristics including estrogen dependence, progressive growth patterns, recurrence tendencies, and metastatic potential. Despite these biological parallels, the molecular mechanisms connecting these conditions remain incompletely characterized. This study aimed to identify shared gene signatures and underlying molecular processes in breast cancer and endometriosis.
Expression matrices for both conditions were obtained from the Gene Expression Omnibus (GEO), UCSC Xena, and the Molecular Taxonomy of Breast Cancer International Consortium. Common differentially expressed genes (DEGs) were identified using the limma package. Comprehensive analyses included Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, machine learning-based diagnostic and prognostic model development, potential therapeutic compound screening, tumor immune microenvironment (TIME) characterization, and hub gene identification with subsequent validation.
The analysis identified 47 common DEGs between breast cancer and endometriosis. Functional assessment of these genes revealed their involvement in critical biological processes including cell cycle regulation, oxidative stress response, and secretory granule and recycling endosome dynamics. Integration of comprehensive genomic and clinical data led to the development of a prognostic model for breast cancer and a diagnostic model for endometriosis.
This study provides molecular insights into shared pathogenic mechanisms underlying breast cancer and endometriosis, highlighting common physiological pathways and key regulatory genes. These findings offer novel perspectives for understanding disease pathogenesis and potential therapeutic interventions for both conditions.
子宫内膜异位症和乳腺癌是影响全球女性的重大全球健康负担。这两种疾病具有显著的共同特征,包括雌激素依赖性、渐进性生长模式、复发倾向和转移潜能。尽管存在这些生物学上的相似之处,但连接这两种疾病的分子机制仍未完全明确。本研究旨在确定乳腺癌和子宫内膜异位症中共同的基因特征及潜在的分子过程。
从基因表达综合数据库(GEO)、加州大学圣克鲁兹分校(UCSC)的Xena以及国际乳腺癌分子分类联盟获取这两种疾病的表达矩阵。使用limma软件包鉴定共同的差异表达基因(DEG)。综合分析包括基因本体(GO)和京都基因与基因组百科全书(KEGG)通路富集分析、基于机器学习的诊断和预后模型开发、潜在治疗化合物筛选、肿瘤免疫微环境(TIME)特征分析以及中枢基因鉴定与后续验证。
分析确定了乳腺癌和子宫内膜异位症之间47个共同的DEG。对这些基因的功能评估显示它们参与了关键的生物学过程,包括细胞周期调控、氧化应激反应以及分泌颗粒和再循环内体动力学。综合基因组和临床数据的整合导致了乳腺癌预后模型和子宫内膜异位症诊断模型的开发。
本研究为乳腺癌和子宫内膜异位症潜在的共同致病机制提供了分子见解,突出了共同的生理途径和关键调控基因。这些发现为理解疾病发病机制以及这两种疾病的潜在治疗干预提供了新的视角。