Suppr超能文献

使用SFSI R包进行多性状/环境稀疏基因组预测。

Multi-trait/environment sparse genomic prediction using the SFSI R-package.

作者信息

Lopez-Cruz Marco, de Los Campos Gustavo

机构信息

Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA.

Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA.

出版信息

Plant Genome. 2025 Jun;18(2):e70050. doi: 10.1002/tpg2.70050.

Abstract

Sparse selection indices (SSIs) can be used to predict the genetic merit of selection candidates using high-dimensional phenotypes (e.g., crop imaging) measured on each of the candidates of selection. Unlike traditional selection indices, SSIs can perform variable selection, thus enabling borrowing of information from a subset of the measured phenotypes. Likewise, sparse genomic prediction (SGP) can be used to predict genetic merit by borrowing information from a subset of the training dataset. In this study, we introduce a framework for multi-trait/environment SGP (MT-SGP) that combines the features of SSI and SGP into a single model. For candidates of selection, an MT-SGP produces prediction equations that use subsets of the training data, borrowing information from correlated traits expressed in training genotypes that are genetically close to the candidates of selection. Along with the methodology, we present an R-package (sparse family and selection index) that provides functions to solve SSIs, SGP, and MT-SGP problems. After presenting simplified examples that illustrate the use of the functions included in the package, we provide extensive benchmarks (using three data sets covering three crops and 30 traits/environments). Our results suggest that MT-SGP either outperforms (with up to 15% gains in prediction accuracy) or performs similarly to MT-genomic best linear unbiased prediction. The benchmarks provide insight regarding the conditions (sample size, genetic correlation among traits, and trait heritability) under which the use of MT-SGP can lead to gains in prediction accuracy.

摘要

稀疏选择指数(SSIs)可用于利用在每个选择候选个体上测量的高维表型(如作物成像)来预测选择候选个体的遗传价值。与传统选择指数不同,SSIs能够进行变量选择,从而实现从所测量表型的一个子集中借用信息。同样,稀疏基因组预测(SGP)可通过从训练数据集的一个子集中借用信息来预测遗传价值。在本研究中,我们引入了一个多性状/环境SGP(MT-SGP)框架,该框架将SSI和SGP的特征整合到一个单一模型中。对于选择候选个体,MT-SGP生成使用训练数据子集的预测方程,从在遗传上与选择候选个体接近的训练基因型中表达的相关性状借用信息。除了方法之外,我们还展示了一个R包(稀疏家族和选择指数),它提供了解决SSIs、SGP和MT-SGP问题的函数。在给出简化示例以说明该包中包含的函数的用法之后,我们提供了广泛的基准测试(使用涵盖三种作物和30个性状/环境的三个数据集)。我们的结果表明,MT-SGP要么表现优于MT-基因组最佳线性无偏预测(预测准确性提高多达15%) ,要么表现与之相似。这些基准测试提供了有关使用MT-SGP可提高预测准确性的条件(样本大小、性状间的遗传相关性和性状遗传力)的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验