Suppr超能文献

钙驱动增强镁硫电池的阳极性能及硫利用率

Ca-Driven Enhancement of Anodic Performance and Sulfur Utilization for Magnesium-Sulfur Batteries.

作者信息

Iimura Reona, Riedel Sibylle, Kobayashi Hiroaki, Matsui Masaki, Honma Itaru, Fichtner Maximilian, Zhao-Karger Zhirong

机构信息

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan.

Helmholtz Institute Ulm (HIU), 89081, Ulm, Germany.

出版信息

ChemSusChem. 2025 Sep 1;18(17):e202500999. doi: 10.1002/cssc.202500999. Epub 2025 Jul 1.

Abstract

Magnesium-sulfur (Mg-S) batteries are emerging as promising energy storage systems due to their cost-effectiveness, safety, and high theoretical volumetric energy density. However, their practical implementation is hindered by sluggish sulfur redox kinetics with Mg and severe polysulfide shuttling. Here, a double-divalent Mg-Ca hybrid electrolyte is introduced, where a small amount of Ca additive significantly enhances sulfur redox kinetics, leading to higher sulfur utilization. Notably, Ca primarily facilitates the solid-to-solid conversion of disulfide to sulfide. In addition to the cathode reaction, the Mg-Ca hybrid electrolyte also contributes to the anode reaction; it enables smoother Mg plating and reduces overpotential with the long cycle (>1000 cycles). For mitigating the polysulfide shuttling, the glass fiber separator with ultrasmall α-MnO nanoparticles is modified to adsorb polysulfide. This synergistic strategy of electrolyte and separator engineering enables the Mg-S battery to achieve an initial capacity exceeding 1000 mAh g and extended cycling stability. These findings highlight the potential of Mg-Ca hybrid electrolytes and nanosized α-MnO-modified separators in the development of high-performance Mg-S batteries.

摘要

镁硫(Mg-S)电池因其成本效益、安全性和高理论体积能量密度,正成为有前景的储能系统。然而,其实际应用受到与镁缓慢的硫氧化还原动力学以及严重的多硫化物穿梭效应的阻碍。在此,引入了一种双二价Mg-Ca混合电解质,其中少量的钙添加剂显著增强了硫氧化还原动力学,从而提高了硫的利用率。值得注意的是,钙主要促进二硫化物向硫化物的固-固转化。除了阴极反应,Mg-Ca混合电解质也有助于阳极反应;它能使镁镀层更平滑,并在长循环(>1000次循环)中降低过电位。为减轻多硫化物穿梭效应,对带有超小α-MnO纳米颗粒的玻璃纤维隔膜进行改性以吸附多硫化物。这种电解质和隔膜工程的协同策略使Mg-S电池能够实现超过1000 mAh g的初始容量和延长的循环稳定性。这些发现突出了Mg-Ca混合电解质和纳米尺寸α-MnO改性隔膜在高性能Mg-S电池开发中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e16/12404011/032375c6612c/CSSC-18-e202500999-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验