Suppr超能文献

大学生对移动健康解决方案兴趣的定性分析。

A qualitative analysis of college students' interest in mHealth solutions.

作者信息

Hoglund Leslie, Becker Craig M, Tonn Cara

机构信息

Department of Health Behavior, Policy, and Management, Joint School of Public Health, Old Dominion University, Norfolk, VA, United States.

Department of Health Education and Promotion, College of Health & Human Performance, East Carolina University, Greenville, NC, United States.

出版信息

Front Public Health. 2025 May 30;13:1605222. doi: 10.3389/fpubh.2025.1605222. eCollection 2025.

Abstract

This study explores college students' perceptions of an AI-driven mHealth application designed to promote well-being. With rising mental health challenges in academic settings, students increasingly seek digital tools that provide holistic support for physical, mental, and financial health. Through focus groups, this qualitative study examines students' preferences for personalized health tracking, educational content, and flexible reminders within a private, supportive community. Key findings emphasize students' desire for a balanced, all-in-one app that integrates health and wellness tools without overwhelming them with notifications. Students also highlighted the importance of social media integration for outreach, though concerns were raised about potential stress from competitive online environments. The findings underscore the value of user-centered design in developing mHealth solutions that foster engagement, simplify wellness management, and respect user privacy. This research contributes to understanding how digital platforms can be tailored to support college students' well-being effectively.

摘要

本研究探讨了大学生对一款旨在促进幸福感的人工智能驱动的移动健康应用程序的看法。随着学术环境中心理健康挑战的不断增加,学生们越来越多地寻求能够为身体、心理和财务健康提供全面支持的数字工具。通过焦点小组,这项定性研究考察了学生在一个私密、支持性社区中对个性化健康追踪、教育内容和灵活提醒的偏好。主要研究结果强调了学生对一款平衡的一体化应用程序的需求,该应用程序集成了健康和保健工具,且不会因通知过多而让他们不堪重负。学生们还强调了社交媒体整合对于推广的重要性,不过也有人对竞争性在线环境可能带来的压力表示担忧。这些研究结果强调了以用户为中心的设计在开发移动健康解决方案中的价值,这些解决方案能够促进参与度、简化健康管理并尊重用户隐私。这项研究有助于理解如何定制数字平台以有效支持大学生的幸福感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a3/12162467/82a8c432e9cf/fpubh-13-1605222-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验