Suppr超能文献

脑动力学的拓扑特征:持久同调揭示个体性及脑-行为关联

Topological signatures of brain dynamics: persistent homology reveals individuality and brain-behavior links.

作者信息

Wang Yue, Xian Junxing, Chen Yuanyuan, Yan Yan

机构信息

Academy of Medical Engineering and Translational Medicine, Medical School of Tianjin University, Tianjin University, Tianjin, China.

College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.

出版信息

Front Hum Neurosci. 2025 May 30;19:1607941. doi: 10.3389/fnhum.2025.1607941. eCollection 2025.

Abstract

INTRODUCTION

Understanding individual differences in brain dynamics is a central goal in neuroscience. While conventional time series features capture signal properties of local brain regions, they often fail to reveal the deeper structure embedded in the brain's complex activity patterns.

METHODS

Resting-state fMRI data from approximately 1,000 subjects in the Human Connectome Project were analyzed. A TDA-based framework integrating time-delay embeddings and persistent homology was employed to extract global dynamic features from resting-state fMRI data. Classification models and canonical correlation analysis (CCA) were employed to examine the associations between brain topological features and individual characteristics, including gender and behavioral traits.

RESULTS

Topological features exhibited high test-retest reliability and enabled accurate individual identification across sessions. In classification tasks, these features outperformed commonly used temporal features in predicting gender. Canonical correlation analysis identified a significant brain-behavior mode that links topological brain patterns to cognitive measures and psychopathological risks. Regression analyses across behavioral domains showed that persistent homology features matched or exceeded the predictive performance of traditional features in higher-order domains such as cognition, emotion, and personality, while traditional features performed slightly better in sensory-related domains.

DISCUSSION

These findings highlight persistent homology as a robust and informative framework for modeling individual differences in brain function, offering promising avenues for personalized neuroimaging analysis.

摘要

引言

了解大脑动力学中的个体差异是神经科学的核心目标。虽然传统的时间序列特征能够捕捉局部脑区的信号特性,但它们往往无法揭示大脑复杂活动模式中所蕴含的深层结构。

方法

分析了人类连接组计划中约1000名受试者的静息态功能磁共振成像(fMRI)数据。采用了一个基于拓扑数据分析(TDA)的框架,该框架整合了时间延迟嵌入和持久同调,以从静息态fMRI数据中提取全局动态特征。使用分类模型和典型相关分析(CCA)来检验脑拓扑特征与个体特征(包括性别和行为特征)之间的关联。

结果

拓扑特征表现出较高的重测信度,并能够在不同时段进行准确的个体识别。在分类任务中,这些特征在预测性别方面优于常用的时间特征。典型相关分析确定了一种显著的脑-行为模式,该模式将脑拓扑模式与认知测量和精神病理风险联系起来。跨行为领域的回归分析表明,在认知、情感和人格等高阶领域,持久同调特征的预测性能与传统特征相当或超过传统特征,而传统特征在感觉相关领域表现略好。

讨论

这些发现突出了持久同调作为一种用于建模脑功能个体差异的强大且信息丰富的框架,为个性化神经影像分析提供了有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba75/12163041/baed93185eb2/fnhum-19-1607941-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验