Hou Shikang, Sun Song, Yin Tao, Zhang Zhibin, Yan Meng
School of Big Data and Software Engineering, Chongqing University, Chongqing, China.
School of Computer and Information Science, Chongqing Normal University, Chongqing, China.
Front Artif Intell. 2025 May 30;8:1607232. doi: 10.3389/frai.2025.1607232. eCollection 2025.
Time series analysis plays a critical role in various applications, including sensor data monitoring, weather forecasting, economic predictions, and network traffic management. While traditional methods primarily focus on modeling time series data at a single temporal scale and achieve notable results, they often overlook dependencies across multiple scales. Furthermore, the intricate structure of multi-scale time series complicates the effective extraction of features at different temporal resolutions.
To address these limitations, we propose AMDCnet, a multi-scale-based time series decomposition and collaboration network designed to enhance the model's capacity for decomposing and integrating data across varying time scales. Specifically, AMDCnet transforms the original time series into multiple temporal resolutions and conducts multi-scale feature decomposition while preserving the overall temporal dynamics. By extracting features from downsampled sequences and integrating multi-resolution features through attention-gated co-training mechanisms, AMDCnet enables efficient modeling of complex time series data.
AMDCnet achieving 44 best results and 10 second-best results out of 64 cases. Experimental results on 8 benchmark datasets demonstrate that AMDCnet achieves state-of-the-art performance in time series forecasting.
Our research provides a robust baseline for the application of artificial intelligence in multivariate time series forecasting. This work leverages multi-scale time series decomposition and gated units for feature fusion, effectively capturing dependencies across different temporal scales. Future studies may further optimize the scale decomposition and fusion modules. Such efforts could enhance the representation of multi-scale information and help address key challenges in multivariate time series prediction.
时间序列分析在各种应用中发挥着关键作用,包括传感器数据监测、天气预报、经济预测和网络流量管理。虽然传统方法主要专注于在单个时间尺度上对时间序列数据进行建模并取得了显著成果,但它们往往忽略了跨多个尺度的依赖性。此外,多尺度时间序列的复杂结构使得在不同时间分辨率下有效提取特征变得复杂。
为了解决这些局限性,我们提出了AMDCnet,这是一种基于多尺度的时间序列分解与协作网络,旨在增强模型在不同时间尺度上分解和整合数据的能力。具体而言,AMDCnet将原始时间序列转换为多个时间分辨率,并在保留整体时间动态的同时进行多尺度特征分解。通过从下采样序列中提取特征并通过注意力门控协同训练机制整合多分辨率特征,AMDCnet能够对复杂的时间序列数据进行高效建模。
在64个案例中,AMDCnet取得了44个最佳结果和10个次佳结果。在8个基准数据集上的实验结果表明,AMDCnet在时间序列预测方面达到了当前的最佳性能。
我们的研究为人工智能在多变量时间序列预测中的应用提供了一个强大的基线。这项工作利用多尺度时间序列分解和门控单元进行特征融合,有效地捕捉了不同时间尺度之间的依赖性。未来的研究可能会进一步优化尺度分解和融合模块。这些努力可以增强多尺度信息的表示,并有助于解决多变量时间序列预测中的关键挑战。