Bartoszewicz Rafał, Ziembicki Jakub, Zdanowicz Ewelina, Herman Artur P, Serafińczuk Jarosław, Sánchez-Diaz Jesús, Das Adhikari Samrat, Mora-Seró Iván, Kudrawiec Robert
Department of Semiconductor Materials Engineering, Wrocław University of Science and Technology, WybrzeŻe Wyspiańskiego 27, 50-370 Wrocław, Poland.
Department of Nanometrology, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland.
J Phys Chem Lett. 2025 Jun 26;16(25):6372-6377. doi: 10.1021/acs.jpclett.5c00903. Epub 2025 Jun 16.
One of the most intriguing properties of hybrid halide perovskites is their structural softness. The interplay between organic and inorganic sublattices leads to a multitude of physical phenomena that are not observed in conventional semiconductors such as III-V materials. One among these is the exceptional band gap tunability under hydrostatic pressure. In this context, tin-based perovskites exhibit a more pronounced effect than their lead-based counterparts. Here, we report on one of the largest band gap tunabilities in this material family. The studied material, layered tin-based (4FP)SnI perovskite, exhibits an exceptionally strong pressure sensitivity, with a band gap shift of up to -160 meV/GPa at room temperature. Combined experimental and computational studies reveal that its band gap dependence on pressure remains linear in the 0-5 GPa range, making (4FP)SnI highly attractive for pressure-sensor applications.
混合卤化物钙钛矿最引人入胜的特性之一是其结构柔软性。有机和无机亚晶格之间的相互作用导致了许多在传统半导体(如III-V族材料)中未观察到的物理现象。其中之一是静水压力下异常的带隙可调性。在这种情况下,锡基钙钛矿比铅基钙钛矿表现出更显著的效果。在此,我们报道了该材料家族中最大的带隙可调性之一。所研究的材料,层状锡基(4FP)SnI钙钛矿,表现出异常强的压力敏感性,在室温下带隙位移高达-160 meV/GPa。结合实验和计算研究表明,其带隙对压力的依赖性在0-5 GPa范围内保持线性,这使得(4FP)SnI在压力传感器应用中极具吸引力。