Ye Yun-Sheng, Mohamed Mohamed Gamal, Ye Nai-Hua, Hung Ting-Yun, Chen Guan-Yu, Lin Shi-Hsin, Tsai Meng-Che, Hwang Bing-Joe, Kuo Shiao-Wei
Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
The Ministry of Education of Taiwan (the Sustainable Electrochemical Energy Development Center (SEED Center) from the Featured Areas Research Center Program, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan.
Small. 2025 Aug;21(32):e2503250. doi: 10.1002/smll.202503250. Epub 2025 Jun 16.
Lithium-sulfur (Li-S) batteries exhibit high energy density potential but suffer from lithium polysulfide (LPS) shuttling and sluggish conversion kinetics, hindering practical application. Here, a novel approach incorporating out-of-plane single-atom catalysts (SACs) into a tetrathiocine-linked porous organic polymer (POP) framework is introduced. This design enables precise spatial distribution of active metal sites, enhancing interactions with soluble LPSs. The out-of-plane configuration further supports unique coordination motifs, accelerating the transformation of soluble LPSs to solid phases and effectively mitigating the shuttle effect. The resultant Pt-based SAC separator achieves outstanding catalytic efficiency, cycling stability, and capacity retention under high sulfur loading. The findings establish a foundational strategy that integrates advanced molecular design with electrochemical performance, offering a promising avenue for improving the practicality and efficiency of Li-S battery technology.
锂硫(Li-S)电池具有高能量密度潜力,但存在多硫化锂(LPS)穿梭和转化动力学缓慢的问题,阻碍了其实际应用。在此,引入了一种将面外单原子催化剂(SAC)纳入四硫辛环连接的多孔有机聚合物(POP)框架的新方法。这种设计能够实现活性金属位点的精确空间分布,增强与可溶性LPS的相互作用。面外构型进一步支持独特的配位模式,加速可溶性LPS向固相的转化,并有效减轻穿梭效应。所得的基于铂的SAC隔膜在高硫负载下实现了出色的催化效率、循环稳定性和容量保持率。这些发现确立了一种将先进分子设计与电化学性能相结合的基础策略,为提高锂硫电池技术的实用性和效率提供了一条有前景的途径。