Suppr超能文献

使用带重启的随机游走模型的多物种数据对物质使用障碍中基因-疾病关联的影响

Influence of multi-species data on gene-disease associations in substance use disorder using random walk with restart models.

作者信息

Castaneda Everest U, Moore Sharon, Bubier Jason A, Grady Stephen K, Langston Michael A, Chesler Elissa J, Baker Erich J

机构信息

Department of Biology, Baylor University, Waco, Texas, United States of America.

School of Engineering and Computer Science, Baylor University, Waco, Texas, United States of America.

出版信息

PLoS One. 2025 Jun 16;20(6):e0325201. doi: 10.1371/journal.pone.0325201. eCollection 2025.

Abstract

A major challenge lies in discovering, emphasizing, and characterizing human gene-disease and gene-gene associations. The limitations of data on the role of human gene products in substance use disorder (SUD) makes it challenging to transition from genetic associations to actionable insights. The integration of data from multiple diverse sources, including information-dense studies in model organisms, has the potential to address this gap. We demonstrate a modified performance of the Random Walk with Restart algorithm when multi-species data is integrated in the heterogeneous network within the context of SUD. Additionally, our approach distinguishes among disparate pathways derived from the Kyoto Encyclopedia of Genes and Genomes. Thus, we conclude that direct incorporation of multi-species data to an aggregated heterogeneous knowledge graph can adjust RWR's performance and enables users to discover new gene-disease and gene-gene associations.

摘要

一个主要挑战在于发现、强调并描述人类基因与疾病以及基因与基因之间的关联。关于人类基因产物在物质使用障碍(SUD)中作用的数据存在局限性,这使得从基因关联过渡到可操作的见解具有挑战性。整合来自多个不同来源的数据,包括模式生物中的信息密集型研究,有可能填补这一空白。我们展示了在SUD背景下将多物种数据整合到异构网络中时,带重启的随机游走算法的改进性能。此外,我们的方法能够区分源自京都基因与基因组百科全书的不同通路。因此,我们得出结论,将多物种数据直接纳入聚合的异构知识图谱可以调整带重启的随机游走算法的性能,并使用户能够发现新的基因与疾病以及基因与基因之间的关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdde/12169588/b1aa1b8f2678/pone.0325201.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验