Wu Wei, Zhao Yikai, Yang Liao, Zeng You, Liu Rui, Huang Shuangyan, Wang Weisheng, Wu Xiande
Zhejiang University of Technology, College of Geoinformatics, Hangzhou, 310014, China.
Zhejiang University of Technology, College of Computer Science and Technology (College of Software), Hangzhou, 310023, China.
Sci Data. 2025 Jun 16;12(1):1010. doi: 10.1038/s41597-025-05359-0.
The scaled utilization of cultivated land has enhanced agricultural development and productivity. Quantifying its spatial distribution is essential for optimizing agricultural decision-making. Xinjiang, a vital grain production region in China, holds paramount study significance due to its distinct geographical location and fragile natural environment. However, most studies on cultivated land fragmentation rely on outdated raster datasets. In this study, we introduce a cultivated land dataset of Xinjiang in a vector form with higher boundary accuracy, and more suitable for cultivated land statistics. A novel parcel extraction method that integrates the Swin Transformer for multi-scale semantic information and DiffusionEdge for capturing fine boundary details is proposed, which enhances the accuracy of land parcel extraction from 10-meter resolution Sentinel-2 imagery, obtained from the Copernicus Open Access Hub. Finally, we present a practical and up-to-date vector dataset of cultivated land. The Technical Validation analysis substantiates the reliability and applicability of the dataset. Through this study, we contribute to developing a replicable methodology for robust cultivated land extraction and parcel-wise cultivated land analysis.
耕地的规模化利用促进了农业发展和提高了生产力。量化其空间分布对于优化农业决策至关重要。新疆是中国重要的粮食产区,因其独特的地理位置和脆弱的自然环境而具有极高的研究意义。然而,大多数关于耕地破碎化的研究依赖于过时的栅格数据集。在本研究中,我们引入了一种矢量形式的新疆耕地数据集,其边界精度更高,更适合耕地统计。提出了一种新颖的地块提取方法,该方法集成了用于多尺度语义信息的Swin Transformer和用于捕捉精细边界细节的DiffusionEdge,提高了从哥白尼开放获取中心获取的10米分辨率哨兵2号影像中地块提取的准确性。最后,我们展示了一个实用且最新的耕地矢量数据集。技术验证分析证实了该数据集的可靠性和适用性。通过本研究,我们为开发一种可复制的稳健耕地提取和地块级耕地分析方法做出了贡献。