Serrano-Gómez Gerard, Yañez Francisca, Soler Zaida, Pons-Tarin Marc, Mayorga Luis, Herrera-deGuise Claudia, Borruel Natalia, Rodriguez-Sinovas Antonio, Consegal Marta, Manjón Isaac, Vega-Abellaneda Sara, Manichanh Chaysavanh
Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), 119-129 pg Vall d'Hebron, Barcelona, 08035, Spain.
Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
Biomark Res. 2025 Jun 16;13(1):85. doi: 10.1186/s40364-025-00802-1.
The gut microbiome plays a key role in the development of inflammatory bowel disease (IBD), as imbalances in microbial composition are associated with immune dysfunction. However, the specific mechanisms by which certain microorganisms contribute to this process remain unclear.
Here, we employed a multi-omics approach on fecal samples to identify novel microbiome markers and elucidate mechanisms underlying IBD. Shotgun metagenomics was applied to 212 samples (850 in total with validation cohort), shotgun metatranscriptomics to 103 samples and metabolomics to 105 samples. Machine learning techniques were used to predict disease and the three omics data were integrated to propose a mechanistic role of the microbiota.
Metagenomic analysis identified Crohn's disease (CD)-specific microbiome signatures, including a panel of 20 species that achieved a high diagnostic performance, with an area under the ROC curve (AUC) of 0.94 in an external validation set. Metatranscriptomic analysis revealed significant alterations in microbial fermentation pathways in CD, but not in ulcerative colitis (UC), highlighting disruptions that explain the depletion of butyrate-a key anti-inflammatory metabolite-observed in metabolomics analysis. Integrative multi-omics analyses further identified active virulence factor genes in CD, predominantly originating from the adherent-invasive Escherichia coli (AIEC). Notably, these findings unveiled novel mechanisms, including E. coli-mediated aspartate depletion and the utilization of propionate, which drives the expression of the ompA virulence gene, critical for bacterial adherence and invasion of the host's macrophages. Interestingly, these microbiome alterations were absent in UC, underscoring distinct mechanisms of disease development between the two IBD subtypes.
In conclusion, our study not only identifies promising novel biomarkers with strong diagnostic potential, which could be valuable in challenging clinical scenarios, but also offers an integrated multi-omics perspective on the microbial mechanisms underlying inflammation and virulence in Crohn's disease.
肠道微生物群在炎症性肠病(IBD)的发展中起关键作用,因为微生物组成的失衡与免疫功能障碍有关。然而,某些微生物促成这一过程的具体机制仍不清楚。
在此,我们对粪便样本采用多组学方法来鉴定新的微生物群标志物并阐明IBD的潜在机制。鸟枪法宏基因组学应用于212个样本(验证队列中共有850个样本),鸟枪法宏转录组学应用于103个样本,代谢组学应用于105个样本。使用机器学习技术预测疾病,并整合这三种组学数据以提出微生物群的作用机制。
宏基因组分析确定了克罗恩病(CD)特异性的微生物群特征,包括一组20个物种,其具有较高的诊断性能,在外部验证集中ROC曲线下面积(AUC)为0.94。宏转录组分析显示CD中微生物发酵途径有显著改变,但在溃疡性结肠炎(UC)中没有,这突出了一些干扰,这些干扰解释了在代谢组学分析中观察到的关键抗炎代谢物丁酸盐的消耗。综合多组学分析进一步确定了CD中活跃的毒力因子基因,主要源自黏附侵袭性大肠杆菌(AIEC)。值得注意的是,这些发现揭示了新的机制,包括大肠杆菌介导的天冬氨酸消耗和丙酸盐的利用,丙酸盐驱动ompA毒力基因的表达,该基因对细菌黏附和侵入宿主巨噬细胞至关重要。有趣的是,UC中不存在这些微生物群改变,这突出了两种IBD亚型之间疾病发展的不同机制。
总之,我们的研究不仅鉴定出具有强大诊断潜力的有前景的新生物标志物,这在具有挑战性的临床场景中可能很有价值,而且还提供了一个关于克罗恩病炎症和毒力潜在微生物机制的综合多组学观点。