Suppr超能文献

The biological functions of low-frequency vibrations (phonons) 5. A phenomenological theory.

作者信息

Chou K C, Kiang Y S

出版信息

Biophys Chem. 1985 Aug;22(3):219-35. doi: 10.1016/0301-4622(85)80045-4.

Abstract

Low-frequency internal motions of a biomacromolecule are thought to possess significant biological function from the dynamic point of view. In this paper, a general phenomenological theory is established by which it is clearly verified that low-frequency resonance plays a central role in the energy transmission required during the cooperative interaction between subunits in a protein oligomer. According to the present theory, it is found that the energy transmission between a pair of diagonal subunits in a protein oligomer with a polygon arrangement is the most efficient, so as to in a sense further predict that after a ligand is bound to a subunit by random collision, its diagonal subunit in the same protein oligomer will possess the greatest probability of binding with the next ligand. Furthermore, based on the concept of the 'resonance-controlled trigger' derived from the phenomenological theory, it is feasible to estimate the lower time limit of allosteric transition from one subunit to the other. Such a time limit depends on the dominant low-frequency mode of each subunit, the ratio of the coupling force constant to the corresponding inherent force constant, as well as the geometrical arrangement of subunits in a protein oligomer. So far none of the allosteric transitions observed in proteins has exceeded the time limit as defined here, indicating a logical consistency between our theory and the experiments.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验