Yao Hong-Qing, Cai Yue-Ming, Xie Tian, Lv Ji-Yuan, Fang Shuai-Shuai, Li Ming-Hong, Shang Ming
Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.
Shanghai Hongene Biotech Corporation, No. 60 Bei Shagang Road, Minhang District, Minhang, 201108, China.
Angew Chem Int Ed Engl. 2025 Aug 18;64(34):e202509807. doi: 10.1002/anie.202509807. Epub 2025 Jun 30.
Chiral phosphorus(V) centers-particularly those bearing fully heteroatom-substituted frameworks-are key stereochemical motifs in pharmaceuticals, nucleic acid therapeutics, and functional materials. However, their stereoselective construction remains a long-standing challenge in synthetic chemistry. Here, we report a copper-catalyzed desymmetrization strategy enabled by rationally engineered PIM ligands that affords broad and modular access to structurally diverse P(V)-stereogenic compounds. By harnessing the tunable Lewis acidity and well-defined chiral environment of the catalyst-together with the distinct mechanistic features of chiral Lewis acid catalysis-this strategy overcomes the substrate scope limitations that have constrained traditional approaches. The method demonstrates broad functional group tolerance and delivers high levels of stereocontrol across seven distinct substitution patterns, including the efficient construction of chiral P═S motifs previously considered synthetically challenging. Importantly, the approach enables efficient late-stage derivatization of nucleosides and their analogs, thereby providing a general entry point to stereodefined P(V)-containing bioactive molecules. This work not only expands the utility of transition-metal Lewis acid catalysis in phosphorus chemistry, but also establishes a versatile framework for applications in drug discovery and nucleic acid-based therapeutics where precise stereochemical control is essential.
手性五价磷中心——尤其是那些带有全杂原子取代骨架的中心——是药物、核酸治疗剂和功能材料中的关键立体化学基序。然而,它们的立体选择性构建仍然是合成化学中长期存在的挑战。在此,我们报道了一种由合理设计的PIM配体实现的铜催化去对称化策略,该策略能广泛且模块化地获得结构多样的P(V) - 立体中心化合物。通过利用催化剂可调的路易斯酸度和明确的手性环境,以及手性路易斯酸催化独特的机理特征,该策略克服了限制传统方法的底物范围限制。该方法展示了广泛的官能团耐受性,并在七种不同的取代模式中实现了高水平的立体控制,包括有效构建以前认为具有合成挑战性的手性P═S基序。重要的是,该方法能够实现核苷及其类似物的高效后期衍生化,从而为立体定义的含P(V)生物活性分子提供了一个通用的切入点。这项工作不仅扩展了过渡金属路易斯酸催化在磷化学中的应用,还为药物发现和基于核酸的治疗应用建立了一个通用框架,其中精确的立体化学控制至关重要。