Juel Pørtner Ellen, Mularski Anna, William Jarrett Tobias, Lauritzen Sønder Stine, Nylandsted Jesper, Simonsen Adam Cohen
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark.
Danish Cancer Institute, Membrane Integrity, Danish Cancer Society, Copenhagen, Denmark.
J R Soc Interface. 2025 Jun;22(227):20240885. doi: 10.1098/rsif.2024.0885. Epub 2025 Jun 18.
Cell nuclei are commonly isolated for mechanobiology studies although isolated nuclei may display viscoelastic properties differing from those of live cells. Nuclear mechanics is generally dependent on the time scale of the applied load and cannot accurately be assessed by a simple elasticity parameter. Active microrheology with an atomic force microscope (AFMMR) is a versatile tool for probing nuclear mechanics and we employ the technique for exploring isolated and live-cell nuclei in MCF7 cells, including the significance of actin depolymerization. We successfully validate the method using polyacrylamide hydrogels with correction for cantilever drag in the fluid. The AFMMR results reveal that isolated and live-cell nuclei are equivalent to within a scaling factor, in their frequency-dependent modulus, with isolated nuclei being softer. The loss tangent reveals a transition from solid- to liquid-like behaviour occurring at higher frequency in isolated than in live-cell nuclei. Viscoelastic modelling using the Jeffreys model describes the frequency-dependent modulus of all measured nuclei. Model parameters display sensitivity to nuclei isolation and to actin depolymerization in live cells. Sections of the Jeffreys circuit can potentially be assigned to internal and external nucleus structures, respectively, thereby establishing a minimal mechanistic framework for interpreting microrheology data on cell nuclei.
虽然分离出的细胞核可能表现出与活细胞不同的粘弹性特性,但细胞核通常被分离出来用于力学生物学研究。核力学通常取决于所施加负载的时间尺度,无法通过简单的弹性参数准确评估。原子力显微镜主动微流变学(AFMMR)是探测核力学的一种通用工具,我们利用该技术探索MCF7细胞中分离出的细胞核和活细胞核,包括肌动蛋白解聚的意义。我们使用聚丙烯酰胺水凝胶成功验证了该方法,并对流体中的悬臂阻力进行了校正。AFMMR结果表明,分离出的细胞核和活细胞核在频率依赖性模量方面,在一个比例因子范围内是等效的,分离出的细胞核更软。损耗角正切表明,分离出的细胞核比活细胞核在更高频率下发生从固态到液态行为的转变。使用杰弗里斯模型的粘弹性建模描述了所有测量细胞核的频率依赖性模量。模型参数显示出对细胞核分离和活细胞中肌动蛋白解聚的敏感性。杰弗里斯电路的各部分可能分别对应于细胞核的内部和外部结构,从而建立一个用于解释细胞核微流变学数据的最小力学框架。
Open Res Eur. 2024-7-24
Psychopharmacol Bull. 2024-7-8
Elife. 2022-7-20
Phys Rev Lett. 2021-6-4
Biomaterials. 2021-8
APL Bioeng. 2020-12-29
Front Bioeng Biotechnol. 2020-4-30
Biophys J. 2020-5-5