Yuan Xiaoqiu, Ma Wanru, Yu Chengfeng, Tu Yubing, Wu Yanwei, Hou Jie, Hou Xingyuan, Wang Zhenyu, Zhang Zongyuan, Shan Lei
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
Department of Physics, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Nano Lett. 2025 Jul 2;25(26):10412-10418. doi: 10.1021/acs.nanolett.5c01837. Epub 2025 Jun 17.
As the first magnetic Kagome material exhibiting charge density waves (CDWs), FeGe has garnered widespread research interest. In this work, we utilized low-temperature, high-magnetic-field scanning tunneling microscopy/spectroscopy to investigate both the CDWs and magnetism in FeGe. We observed coexisting short-range 2 × 2 and √3 × √3 CDW patterns, which are spatially exclusive with Ge1 site defects in the Kagome layer, suggesting that CDW formation is related to Ge1-dimerization involving electron correlations. Using a spin-polarized tip, we identified the A-type antiferromagnetic (AFM) structure, which undergoes a gradual spin-flop transition with increasing magnetic field. The gap opened at the Fermi energy evolves with the magnetic structure transition but remains insensitive to the presence of CDWs. These results underscore the role of electron correlations in the formation of the CDWs in FeGe and identify the magnetism origin of the low-energy gap, revealing a compatibility between AFM order and CDWs in FeGe.
作为首个呈现电荷密度波(CDW)的磁性 Kagome 材料,FeGe 已引发广泛的研究兴趣。在这项工作中,我们利用低温、高磁场扫描隧道显微镜/能谱来研究 FeGe 中的 CDW 和磁性。我们观察到共存的短程 2×2 和√3×√3 CDW 图案,它们在空间上与 Kagome 层中的 Ge1 位点缺陷相互排斥,这表明 CDW 的形成与涉及电子关联的 Ge1 二聚化有关。使用自旋极化探针,我们确定了 A 型反铁磁(AFM)结构,该结构随着磁场增加经历逐渐的自旋翻转转变。在费米能量处打开的能隙随磁性结构转变而演变,但对 CDW 的存在不敏感。这些结果强调了电子关联在 FeGe 中 CDW 形成中的作用,并确定了低能隙的磁性起源,揭示了 FeGe 中 AFM 序与 CDW 之间的兼容性。