Rawat Nishtha, Sharma Yogesh, Wang Yuanyuan, Chen Zhong-Hua, Singla-Pareek Sneh Lata, Siddique Kadambot H M, Shabala Sergey, Pareek Ashwani
Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
National Agri-Food and Biomanufacturing Institute, Mohali, Punjab, India.
Plant Cell Environ. 2025 Oct;48(10):7150-7164. doi: 10.1111/pce.15669. Epub 2025 Jun 17.
Salinity and drought are major global challenges threatening crop productivity and ecosystem diversity, causing annual losses exceeding US$100 billion. These stresses share a common factor: osmotic stress imposed on plants. While extensive research has explored plant osmotic adjustment mechanisms, the processes underlying osmosensing in plant roots and how this sensing translates into adaptive responses remain poorly understood. This study aims to bridge this gap by examining the structure and function of various putative osmosensors (e.g., histidine kinases, mechanosensitive ion channels, phospholipase enzymes, and receptor-like kinases) across halophytes and glycophytes-two plant groups with contrasting salinity tolerance. We conducted a thorough bioinformatics analysis to explore the molecular evolution and structural diversity of these osmosensors in both plant groups. Our findings reveal that the evolution of putative osmosensors is highly conserved between glycophytes and halophytes, with notable divergence between monocot and dicot species within both groups. While halophytes do not exhibit distinct protein families during their evolutionary process, differences in conserved amino acids between glycophytes and halophytes may significantly influence osmosensing, signaling, and stress adaptation. Importantly, halophytes possess more copies of osmosensor-related genes compared to glycophytes. These findings offer valuable insights for breeding climate-resilient crops, highlighting potential pathways to enhance stress tolerance through genetic improvements.
盐度和干旱是威胁作物生产力和生态系统多样性的重大全球性挑战,每年造成的损失超过1000亿美元。这些胁迫有一个共同因素:施加在植物上的渗透胁迫。虽然已有广泛研究探索了植物的渗透调节机制,但植物根系中渗透感应的潜在过程以及这种感应如何转化为适应性反应仍知之甚少。本研究旨在通过研究盐生植物和甜土植物(两类耐盐性截然不同的植物)中各种假定的渗透感受器(如组氨酸激酶、机械敏感离子通道、磷脂酶和类受体激酶)的结构和功能来弥合这一差距。我们进行了全面的生物信息学分析,以探索这两类植物中这些渗透感受器的分子进化和结构多样性。我们的研究结果表明,假定的渗透感受器在甜土植物和盐生植物之间的进化高度保守,两组中的单子叶植物和双子叶植物物种之间存在显著差异。虽然盐生植物在其进化过程中没有表现出独特的蛋白质家族,但甜土植物和盐生植物之间保守氨基酸的差异可能会显著影响渗透感应、信号传导和胁迫适应。重要的是,与甜土植物相比,盐生植物拥有更多与渗透感受器相关的基因拷贝。这些发现为培育适应气候变化的作物提供了有价值的见解,突出了通过基因改良提高胁迫耐受性的潜在途径。